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ABSTRACT

Woven shell structures are beneficial for applications requiring lightweight material, durability, and design
tunability such as in smart material devices, soft robotics, and aerospace. A fundamental component
of these structures is the woven column. While the mechanical properties of a woven column can be
determined, existing models are computationally expensive and do not explain the underlying mechanics
behind trends. This work establishes purely analytical models for the buckling load and stiffness of woven
columns, as well as a criteria for the buckling modes of these columns. The results of our models match
closely to experimental data across various weave design parameters, and through our buckling mode
criteria we determine local and global buckling trends across weave parameters. Our model advances our
understanding of mechanics in woven structures and serves as a baseline for design.
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1 Introduction

The long-standing craft of weaving has gained traction in modern engineering industry for its mechanical
strength, tunable nature, and light weight. These intrinsic properties of weaving are advantageous for smart
material devices, soft robotics, and aerospace application! . The plain weave (Fig. 1a), in which perpendicular
weavers alternate over and under each other, is the most commonly implemented pattern. This simple weave
pattern achieves the tightest interlocking of material, making for strong and durable structures*. Previous
work shows that plain woven 3D shell structures have greater resilience than their continuous counterparts’,
as demonstrated in Fig. 1b.

Similar to the continuous cylindrical shell, the woven column is a fundamental unit of 3D woven shell
structures. Cylindrical shell buckling has been widely studied, and there exist closed form solutions for their
behaviors®~’. Woven column buckling behaviors, however, are more complicated due to local interactions
between weavers (Fig. 1c). Recent works implement finite element analysis techniques®~!! and semi-analytical
modeling!>'* to determine mechanical properties such as buckling load and stiffness of woven materials.
These models can require large computational power, and unlike an analytical model, they do not help us
understand the underlying mechanics of woven column buckling behaviors.

We derive purely analytical models for the stiffness and buckling forces of woven columns. We then
classify global and local buckling modes of woven cylinders, and determine a relationship between the
buckling mode and weaver width. Our models and findings explain scaling laws due to changes in weaver
thickness and width, providing elegant tools for choosing suitable weaver parameters.



Figure 1. Overview of the woven columns and their buckling modes explored in this work. a. Construction of
the plain woven column, a baseline architecture for 3D woven shell forms. b. Comparison shows that a continuous
column undergoes permanent damage after buckling, whereas a woven column made of the same amount of material
does not experience plastic deformation. ¢. Localized buckling of weavers contributes to overall buckling of columns.
Buckling pattern is dependent on individual weaver parameters. Scale bars are 5 cm.

2 Mechanics model derivation

We use fundamental mechanics theory to derive models for the stiffness and critical buckling loads of a
thin-walled, densely woven column. These models are based on geometric parameters and material properties
of the column’s vertical and horizontal weavers.

2.1 Buckling of woven columns
We assume that the critical buckling load of a woven column is the sum of the critical load of its vertical
weavers and that of its horizontal weavers: P, jorq1 = Per, i+ Per, v. We first consider the critical load of vertical
weavers P, ,. We assume that the weavers are initially straight and buckle independently. Furthermore, by
assuming a densely woven cylinder, each segment of the vertical weaver is also independent. Illustrated in Fig.
2a, the buckling force of the combined vertical weavers is then governed by the buckling force of a singular
segment. Based on the Euler buckling theory, P, , is dependent on the vertical weaver width w,, vertical
weaver thickness 7,, and horizontal weaver width wy,. 15
2 3
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Next, we consider the critical load of the horizontal weavers P, ;. These weavers are assumed to be short
cylindrical shells with axisymmetric sinusoidal deformations. Using classical theory, the critical load of a
horizontal weaver is dependent on its thickness to radius ratio /R and the face area A s. Koiter’s knockdown

factor B accounts for deformations.®
E(t,/R
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Axisymmetric sinusoidal deformations greatly reduce the buckling force that a cylindrical shell withstands.
To account for this, Koiter’s knockdown factor 3 is solved implicitly using material parameters and the
imperfection perturbation size Jj,'°.

B-(2) = (50-v9) “a-p2 @

The perturbation term J;, can be calculated by approximating the horizontal weaver as a polygonal section
with n,, sides of width w,,. Then § is the average distance of this polygon from a circle of equal circumference.
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Equivalently, we take half the distance of its maximum and minimum radii as in Fig. 2b.

1 w w
S, = — v v 4
" 2(251n(n£v) +2tan(n—”v)) X
We compute the horizontal buckling force using Egs. (2), (3), and (4). We can then add this to the buckling
force of the vertical weavers Eq. (1) to obtain the total column buckling force.

2.2 Stiffness of woven columns

Considering the linear stiffness where the displacement is infinitesimally small, we assume that the stiffness of
a woven column is the sum of the stiffness of its horizontal weavers k;, and the stiffness of its vertical weavers
ky: kiorar = ki + k. We will first consider the vertical weaver stiffness k,. We assume that the vertical weavers
deform sinusoidally as they are compressed, and that bending deformations store significantly more energy
than axial deformations. These weavers act in parallel and resist bending deformations. The vertical weavers
take on a curved cross section, which will increase their stiffness significantly by a factor . We balance
forces and moments at the location of the greatest perturbation (as in Fig. 2a) to obtain a dependence of the
axial load of the weaver P, on flexural rigidity £/, number of vertical weavers n,, weaver curvature k, and
perturbation J,. Note that k and §, are both functions of the axial displacement A. By relating stiffness to the
derivative of axial load with respect to axial displacement, we obtain:

K(4)

nyEI - —} 5)

k,= o Sv(A)
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The factor a accounts for the significant effect of curvature induced stiffness!”~1°, which increases with

vertical weaver width. We apply Pini’s equation to the vertical weaver segments, using the column radius R.

4 2
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Assuming the out-of-plane displacement 9, is small and that the vertical weaver deforms sinusoidally with
ny, half waves, we determine the maximum curvature k of the vertical weavers using the curvature formula.
At maximum curvature, this reduces as follows:

n,m 2
K=0 ( ) 7
V(7 (7)

Since k o< §,, our derivative simplifies without further calculation of 8, and we simplify Egs. (5), (6), and

(7):
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Horizontal weavers act in series and deform axially in response to loading. The contact area A is the area
where horizontal weavers make contact between vertical weavers, as shown in Fig. 2b. The horizontal weaver
contribution to stiffness is then:

Envt,%
 nwy

ky,

©)

We add Eqgs. (8) and (9) to obtain the overall stiffness of a woven column.
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Figure 2. Derivation of the stiffness and buckling load of woven columns.
a. Schematic of the vertical weaver. Each segment of the vertical weaver is
modeled as an independent buckling beam. To derive stiffness, the inner force
and bending moment are analyzed at locations of maximum curvature. b. Hori-
zontal weaver schematic. Horizontal weavers are modelled as axisymmetric
sinusoidally deformed cylindrical shells stacked on top of one another. Horizon-
tal cross section is approximated as a polygon with n, sides for calculation of o.
Given a woven geometry, d is derived by averaging R,,.x and R,,;,. Contact area
for horizontal stiffness derivation is taken as the total contact area between
subsequent horizontal weavers.

3 Sample fabrication and experimental methods

We conducted a parametric study and validated our models through physical experimentation on woven
cylindrical shell samples. We constructed samples varying: (1) horizontal weaver width wy, (2) vertical
weaver width w,, (3) horizontal weaver material thickness #, (4) vertical weaver material thickness #,, and
(5) sample height 4. Our samples are woven by hand from vertical and horizontal strips of Mylar® polyester
connected by a vertical seam of split pins (Fig. 3a). For studies with consistent vertical weaver thickness, the
vertical weavers are cut from a continuous piece of material with a 10mm connection at the top and bottom
This method assists fabrication and consistency in spacing, but may cause varying end effects if the vertical
weaver thickness varies. In our study varying vertical thickness, we instead connect vertical weavers using
two additional rows of split pins. We maintain consistent tightness of the weaving across all samples by
scaling the distance between weavers proportionally to the weaver material thickness.?%!

We obtained an experimental buckling force, stiffness, and qualitative buckling mode for each woven
sample using plate-plate compression loading between two acrylic plates (Fig. 3b). The samples were
compressed at a rate of 15 mm/min using a Mark-10® ESM 1500 single-column tabletop testing system with
a 250 N load cell. Force and displacement are recorded at a sampling rate of 20 Hz until a global maximum
force is reached. Buckling force is taken as the peak load experienced and stiffness is taken by numerically
differentiating the data to find the maximum instantaneous slope before the buckling force is reached (See Fig.
3¢). To account for precision error in sample fabrication, we tested three identical samples of each variation.
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Figure 3. Fabrication of woven columns and the test setup. a. For tests where vertical thickness
remains constant, vertical weavers are connected at top and bottom to maintain consistent spacing
in samples. Scale bars are 4 cm. b. For tests where vertical thickness varies, vertical weavers are
joined directly at the top and bottom of horizontal weavers to maintain consistent end effects. Scale
bars are 4 cm. c. Test setup using Mark-10® ESM 1500 single-column tabletop testing system. d.
Schematic for plate-plate compression loading of woven column. Vertical and horizontal weavers
both deform with sinusoidal deflections. e. Typical force-displacement curve. Measured properties
are buckling force and stiffness.

4 Results

Parametric studies were performed by varying horizontal weaver width wy,, vertical weaver width w,,, horizontal
weaver material thickness #;,, vertical weaver material thickness #,, and sample height 4. Qualitative trends in
buckling behavior varied with respect to weaver widths, and larger vertical weaver widths correlated with
local buckling modes and pre-buckling behavior. We validated our models for the buckling force and stiffness
of woven columns against the experimental data.

4.1 Buckling mode classification

Based on our parametric study varying vertical and horizontal widths of woven columns, we observed
correlations of global and local buckling in the samples (Fig. 4a) with vertical and horizontal weaver width.
The locally buckling columns also commonly exhibited prebuckling behavior.

We define a column’s buckling mode as global when the deformation immediately after buckling spans at
least two horizontal weavers in width and at least two vertical weavers in height. If deformations are contained
within individual weavers, we denote the column’s buckling mode as local. We observed that columns of
greater vertical width are more prone to local buckling behaviors, and columns of smaller vertical width are
more prone to global buckling behaviors. Some columns of intermediate vertical weaver width exhibited both
local and global buckling phenomena.

We define a column to be pre-buckle prone if it experiences any local maxima in its force-displacement
curve before 95% of buckling force is reached. Local maxima are indicated when forces within 0.4 mm of a
local maximum are less than 93% of this maximum. Columns that buckle in global patterns require for the
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horizontal and vertical weavers to deform together causing failure of the system, whereas in local buckling
patterns the locations of buckling are independent of one another and don’t necessarily cause the overall
failure of the column. Therefore, we observe more pre-buckling behavior in columns that buckle locally than
in ones that buckle globally. This property may be more or less favorable depending on the application, but
our results show that it can be tuned by adjusting the vertical weaver width.
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Figure 4. Comparison of buckling modes. a. Depending on a column’s
horizontal and vertical weaver widths, its buckling mode switches between
global, local, and combination modes. b. Typical force-displacement curve
for a globally buckling column. No pre-buckling behavior is experienced. c.
Typical force-displacement curve for a locally buckling column. Pre-buckling is
experienced before the maximum force is obtained.

4.2 Parametric study and model validation

The buckling force of a woven column increases with both its vertical and horizontal weaver thicknesses,
as validated in Fig. 5a and b. By comparing Fig. 5a and Fig. 5b, we can determine whether the horizontal
weaver thickness or vertical weaver thickness is more dominant based on which curve produces a greater
buckling force. For thin structures (thicknesses less than 1.5 mm), the horizontal weaver thickness is more
dominant than the vertical weaver thickness. For thicker structures (thickness greater than 3 mm), the vertical
thickness is more dominant than the horizontal thickness.

Shown in Fig. 5d and e, our buckling force model is validated against variation in vertical and horizontal
weaver width. Increases in vertical weaver width cause greater perturbations in horizontal weavers, making
them more prone to buckling. When horizontal width is varied, our model assumes an ideal case in which
the weaver spacing is consistent and weavers do not slip, hence no abnormalities can form on the column. If
any vertical weaver has an irregular sinusoidal period, the largest wave will buckle first at a lower critical
force than predicted. These defects become more likely when horizontal weavers are less wide, so a realistic
fabricated column will not reach infinite buckling forces as the horizontal weaver widths become small. This
effect on buckling force is most apparent in our data when horizontal and vertical widths are both less than 15
mm. Our model accurately predicts the near constant trend of the buckling force as horizontal width increases.

The effects of column height on buckling force are small compared to the effects of thickness factors.
Similar to classical models for cylindrical shell buckling®, our model does not account for column height (see
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Fig. 5¢). Shown by the data, the columns of larger height buckle at lower forces than those of shorter height.
As with shell buckling, this likely occurs due to the increased chance of fabrication defects and irregularities
in longer columns.
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Figure 5. How different design parameters influence the buckling forces
of woven columns. a. Buckling force increases proportionally to vertical
thickness cubed, resulting from the relationship of vertical weaver buckling
force to the second moment of inertia. b. Buckling force increases with
horizontal thickness as a result of shell buckling. ¢. Buckling force experiences
a slight decrease with height, which is not accounted for in the model. d. When
vertical width increases, horizontal weavers experience greater deformation.
This results in lower buckling forces for greater vertical weaver widths. e. Our
idealized model expects that for small horizontal widths, the vertical weavers will
experience tighter wave patterns resulting in higher buckling forces. In reality,
inconsistencies in weaving allow for weak spots where the vertical weavers
form larger waves. f. Schematic of design parameters.

The stiffness of the woven column increases with respect to both its vertical and horizontal weaver
thicknesses, as validated in Fig. 6a and b. By increasing vertical weaver thickness, we increase the bending
modulus of the vertical weaver by a factor of thickness cubed, hence making the structure stiffer. By increasing
the horizontal weaver thickness, we increase the contact area between horizontal weavers, which also stiffens
the structure. We compare Fig. 6a and b to determine whether the vertical weaver thickness or horizontal
weaver thickness is more dominant in total structure stiffness. For thin structures (thicknesses less than
0.15 mm), the vertical weaver thickness is more dominant than the horizontal weaver thickness. For thicker
structures (thicknesses greater than 0.25 mm), the horizontal thickness is more dominant than the vertical
thickness.

Shown in Fig. 6d and e, our stiffness model is validated against variation in vertical and horizontal weaver
width. As horizontal weaver width decreases, the vertical weavers are forced to have smaller periods with
greater curvature relative to displacement, hence increasing stiffness of the vertical weavers and the overall
stiffness of the column. As vertical weaver width increases, they curve more around the center of the column
resulting in curvature-induced stiffness. In both cases, the vertical weavers contribution to stiffness causes the
overall stiffness trend.

The increase in stiffness for shorter columns shown in Fig. 6c¢ is related to the horizontal weaver
contribution to stiffness. Our parametric study keeps horizontal weaver width constant, so we reduce height
by stacking fewer horizontal weavers. Since the horizontal weavers act in series, a larger stiffness is achieved
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when less weavers are stacked.
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Figure 6. How different design parameters influence the stiffnesses of
woven columns. a. Stiffness increases with vertical thickness, as a result
of the relationship of &, to the vertical weaver second moment of inertia. b.
Stiffness increases proportionally to horizontal thickness squared because the
stress area A, «< t>. ¢. Stiffness increases exponentially for shorter columns
because by keeping w;, constant, we have i «< n;, hence the relationship fol-
lows from kj, = é d. Stiffness increases with vertical weaver width because
wider vertical weavers exhibit more curvature, resulting in additional curvature
induced stiffness. e. As the horizontal weaver width decreases, the vertical
weavers experience greater curvature relative to perturbation of shape. This
results in increased stiffness. f. Schematic of design parameters.

5 Conclusions

We created purely analytic models for the buckling force and stiffness of woven columns, which are simple to
use and have been parametrically validated against experimental data. Our models explain the underlying
mechanics behind buckling force and stiffness trends in woven structures and serve as a closed-form tool
for design. We determined that while both vertical and horizontal weavers contribute to the overall column
buckling force and stiffness, in some cases one or the other will have more influence on tuning a property. Our
results support effective design for efficient material use by identifying which weaving direction is dominant
in achieving a desired structural property.

We established guidelines for the buckling mode of a column based on its vertical and horizontal weaver
widths. We categorized columns into local and global modes, and determined that this trait is largely dependent
on vertical weaver width. Based on the woven column’s buckling mode, we determined its typical force-
displacement relationship during compression testing. Our findings serve to guide design of woven structures
such that favorable behaviors and buckling modes can be achieved.
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