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A B S T R A C T   

Intra-wave modulation effects with oscillating time-varying frequencies have been observed in physical systems 
including mechanical, ocean, power, and even biological ones. Such phenomena correspond to actual physical 
processes with which the underlying dynamics of these systems can be understood. In this work, we study intra- 
wave modulation effects in milling processes with the aid of iterative nonlinear chirp mode decomposition 
(INCMD), a recently proposed technique for analyzing complex dynamic responses. A nonlinear non-stationary 
template signal is provided to model milling vibration responses, and an INCMD-based strategy is developed to 
extract embedded modulation features. Through dynamic simulations and experimental verification, it has been 
demonstrated that distinct intra-wave modulation frequencies that are exactly equal to theoretical chatter fre
quencies calculated based on the Floquet theory exist to indicate different cutting states, and milling instability is 
accompanied by the variation of such a characteristic quantity. Bessel functions can mathematically relate 
explicit modulation patterns with intricate spectral distributions of milling responses. Moreover, the switch of the 
modulation pattern, which remains noticeable in the presence of noise, emerges far earlier than visible chatter 
marks do, indicating the superiority of the chatter detection and even prediction utilizing intra-wave modulation 
features.   

1. Introduction 

Milling, especially high-speed milling, is an important precision 
machining technology [1]. Understanding milling dynamics has always 
been vital because it is the basis for related industrial applications such 
as system monitoring [2], prediction [3], and control [4]. Numerous 
factors, including the parametric excitation due to periodic cutting in 
and out of tool teeth, time-delay caused by regenerative effects [5], and 
nonlinearity originating from deformations of processed materials [6], 
make the milling system a complex one. Such complexity will be exac
erbated by chatter, a notorious instability phenomenon in milling pro
cesses, especially when the workpiece is a thin-walled part with low 
stiffness [7]. 

Forward and reverse system characterization methods can be used to 
gain insights into milling dynamics. One of the most mature forward 
techniques is lobe diagram plotting [8], which predicts system stability 
from the perspective of dynamical bifurcations. Although many strate
gies exist, a generic approach to obtain the lobe diagram is 

semi-discretization [9], which is based on the Floquet theory of periodic 
time-varying ordinary differential equations. Stability lobes, although 
helpful in theoretical studies, are difficult to put into practice because of 
their vulnerability to volatile system parameters and demand for highly 
accurate system identifications [1]. Other forward schemes based on the 
mathematical model of physical systems have similar drawbacks. 

Reverse characterization aims to comprehend underlying processes 
through external system responses, among which vibration-related re
sponses, including milling forces [10], displacements [11], accelerations 
[12], and noises [13], are most commonly utilized because they are easy 
to collect and are rich in cutting state information. Vibrations emanating 
from complex milling systems are quite intricate and require the use of 
signal processing tools. Based on the classic Fourier analysis, the power 
spectra of milling responses have been employed to explore the essence 
of perplexing phenomena, including the bifurcation of milling responses 
[14], influence of tool runout on chatter instability [15], emergence of 
modal coupling [16], and mechanism of process damping [17]. 

Nonetheless, the pure frequency-domain description is not an 
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appropriate choice considering the strongly non-stationary attributes of 
the milling system, which limits the application of traditional spectrum 
tools. According to the Floquet theory [14], infinite harmonics associ
ated with stable milling exist in the frequency domain. Even more 
inexplicable components arise when chatter occurs, making the spectral 
distribution complicated. Such characterizations are mathematically 
rigorous though, they do not correspond to actual physical processes; 
that is, they are extrinsic features and do not reflect the nature of the 
milling system. As a result, subtle changes in the cutting state will be 
barely captured by the power spectrum because extrinsic features lag 
intrinsic processes. A new cutting state cannot be detected until it is fully 
developed, especially in practical engineering problems with in
terferences and noises [18]. 

As an alternative to the frequency-domain analyses, time-domain 
periodic sampling approaches such as the Poincaré mapping [19] have 
been utilized to capture phase-space milling bifurcations. Such tech
niques have extremely low computational costs and thus can be 
employed for rapid dynamic analyses with the aid of a dedicated 
numeric metric [20]. However, when the cutting is in the critical tran
sition phase, the evolution of sampling points in the phase space cannot 
be traced effectively and the corresponding metric threshold is difficult 
to determine. In other words, chatter is difficult to detect in the pre
mature phase. 

A class of novel dynamic characterizations named intra-wave mod
ulations were first utilized by Huang et al. (1996) [21] to analyze re
sponses from classical Duffing, Rӧssler, and Lorenz systems, and the 
method has recently gained much attention. Neither providing spurious 
nor redundant information, intra-wave modulation analyses conduce to 
the intuitive understanding of physical systems. Such features are 
directly associated with underlying dynamic processes such as rubbing 
impacts in rotor systems [22], crack-induced large deformations in beam 
systems [23], inter-area oscillations in power systems [24], rogue waves 
in ocean systems [25], and even repetitive movements in human bio
logical systems [26]. However, intra-wave modulated signals exhibit a 
fast oscillating time-varying frequency in the time-frequency domain 
[23]. Additionally, in complex systems, responses from different origins 
tend to be coupled. Considering these two factors, an effective tool that 
integrates the functions of signal decomposition and time-frequency 
analysis is needed. Although the classic Hilbert-Huang transform 
(HHT) [21] meets the above needs, it lacks a rigorous mathematical 
foundation and thus is extremely sensitive to perturbations of noise. 
Narrow-band filter-bank-based variational mode decomposition (VMD) 
[27] and synchrosqueezing transform (SST) [28] cannot work in such 
cases because intra-wave modulation effects lead to wide-band spectra 
[22]. 

Conventional simple descriptive models of milling responses can 

only characterize milling processes of a particular aspect and thus 
impede a comprehensive understanding of milling dynamics. Combining 
the time, frequency, and amplitude domain, the characterization of 
milling processes based on intra-wave modulations can be expected to 
provide new insights but has never been studied. Related to intra-wave 
modulation phenomena, some questions are to be tackled:  

● What is the physics of intra-wave modulations in milling processes?  
● Do distinct modulation patterns exist under different cutting states?  
● Is there any internal relationship between the modulation patterns, 

spectral distributions, and dynamical bifurcations?  
● What can we utilize intra-wave modulations of milling responses for? 

In this work, to answer these questions, a generalized nonlinear non- 
stationary signal model of milling responses is established first. Deter
mination of model parameters is equivalent to the extraction of 
embedded intra-wave modulation features, to accomplish which, a lack 
of an effective signal processing tool has to be addressed. A novel 
strategy based on the recently proposed iterative nonlinear chirp mode 
decomposition (INCMD) [23] is developed. The idea of the INCMD is a 
blend of those adopted in the VMD and HHT. Such a framework makes 
the INCMD retain both mathematical rigor and algorithm adaptability. 
An example of a Stokes wave [29] is presented to demonstrate that the 
INCMD achieves a physically meaningful decomposition for wide-band 
multicomponent responses [23]. 

Through dynamic simulations and experimental verification, it has 
been observed that infinite harmonic processes do not exist in stable 
cutting, but are induced by intra-wave modulated responses with the 
tooth-passing frequency as the modulation frequency, and such phe
nomena physically correspond to the stiffening effect [30] caused by 
cutting impacts. The onset of chatter is intrinsically accompanied not by 
the emergence of spurious non-harmonic processes, but by the switch of 
the modulation frequency, and this frequency is exactly equal to the 
chatter frequency derived from bifurcation calculations based on the 
Floquet theory [14]. Distinct modulation patterns and spectral distri
butions can be mathematically related by Bessel functions [31]. More
over, the switch of the modulation pattern foretells the transition of the 
cutting state, which emerges far earlier than visible chatter marks do. 
The findings from this study provide additional insights into the rela
tionship between milling responses and cutting stability, and further 
demonstrate the application of intra-wave modulation analyses in con
dition monitoring of milling processes. 

2. Dynamics of milling 

Chatter is extremely common in the milling of thin-walled parts [1]. 

Fig. 1. Schematic of the thin-walled part milling system [32]. (a) Overall view. (b) Top view.  
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A descriptive model of such processes is provided in this section, fol
lowed by a simplified stability analysis. 

2.1. Dynamic model 

A schematic of the milling system is shown in Fig. 1. The tool is 
modeled as a two-degree-of-freedom spring-mass-damper system, and 
the thin-walled workpiece is represented by a cantilevered plate with a 
single main mode of vibration [32]. The motion of the workpiece is 
considered in an inertial coordinate system with the point o as the origin 
(see Fig. 1 (a)), while that of the tool is considered in a non-inertial 
coordinate system attached to its own geometric center ot (see Fig. 1 
(b)). The spindle rotation and feed motion indicate an up-milling 
operation. The engagement between the tool and the workpiece is 
governed by 
⎧
⎪⎪⎨

⎪⎪⎩

mtxẍt + ctxẋt + ktxxt = Fx(t),
mtyÿt + ctyẏt + ktyyt = Fy(t),
mwyÿw + cwyẏw + kwyyw = − Fy(t),

(1)  

where yt, xt, mty, mtx, kty, ktx, cty, and ctx denote the displacement, mass, 
stiffness, and damping coefficient of the tool in the feed and its normal 
direction, respectively, while yw, mwy, kwy, and cwy are those of the 
workpiece in the normal direction. Moreover, Fx(t) and Fy(t) are the 
cutting forces in two orthogonal directions, which must be determined 
to explicitly express Eq. (1). 

Considering an N-teeth milling tool, for the j-th tooth engaged as 
shown in Fig. 1 (b), the cutting force can be projected in the radial and 
tangential directions as 
{

Ft,j(t) = κtaphj(t),
Fr,j(t) = κnκtaphj(t),

(2)  

where κt is the specific cutting energy, κn is a proportionality factor, ap is 
the axial depth of cut (see Fig. 1 (a)), and hj(t) denotes the chip thickness 
encountered by tooth j at time t. Consisting of a static part corresponding 
to the tool feed and a dynamic part resulting from the regenerative effect 
[33], the term hj(t) is expressed by 
{

hj(t)=hj,stat(t)+hj,dyn(t)= fz sin
(
φj(t)

)
+
(
Δx(t)sin

(
φj(t)

)
+Δy(t)cos

(
φj(t)

))
,

Δx(t)=xt(t) − xt(t − τ), Δy(t)=(yt(t) − yw(t)) − (yt(t − τ)− yw(t − τ)),
(3)  

where fz is the feed per tooth, τ is the tooth passing period such that τ =

60/NΩ in which Ω denotes the spindle speed in rpm, and φj(t) represents 
the angular position of the tooth j at time t as φj(t) = (2πΩt /60) −
2π(j − 1)/N, j = 1,2,⋯,N. Applying the projection transformation, the 
cutting force in the feed direction and its normal direction can be ob
tained as 
{

Fx,j(t) = − Fr,j(t)sin
(
φj(t)

)
− Ft,j(t)cos

(
φj(t)

)
,

Fy,j(t) = − Fr,j(t)cos
(
φj(t)

)
+ Ft,j(t)sin

(
φj(t)

)
.

(4) 

The cutting force acting on the entire tool can be determined as 

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Fx(t) =
∑N

j=1
g
(
φj(t)

)
δ
(
hj(t)

)
Fx,j(t),

Fy(t) =
∑N

j=1
g
(
φj(t)

)
δ
(
hj(t)

)
Fy,j(t).

(5) 

The function g( ⋅) in Eq. (5) is a tooth-cutting indicating function 
given by 

g
(
φj(t)

)
=

{
1, φst < φj(t) < φex
0, else , (6)  

where φst and φex are the cutting start and exit angle, respectively, given 

by φst = 0 and φex = cos(1 − 2ae /D) in a standard up-milling process. 
Here, ae is the radial depth of cut (see Fig. 1 (b)) and D is the tool 
diameter. In addition, δ( ⋅) is another indicating function that charac
terizes the loss-of-contact effect [34] between the tool and the workpiece, 
which can dominate the system dynamics in a partial immersion milling 
process. The function δ( ⋅) is expressed as [34]. 

δ
(
hj(t)

)
=

{
1, hj(t) > 0
0, hj(t) ≤ 0 . (7) 

Substituting Eqs. (2)–(7) into Eq. (1), the explicit governing equation 
can be formulated, leading to a piecewise-linear, periodically time- 
varying, constant-time-delay six-dimensional state-space system. 

2.2. Stability and spectral distributions 

Disregarding the nonlinearity in Eq. (1), the well-known semi-dis
cretization method [9] is applied to achieve a simplified stability anal
ysis. A milling process of a thin-walled aluminum plate that was already 
studied numerically by Balachandran [6] is considered. The tool is 
assumed to have only one tooth to exclude the run-out effect [15], and 
the tool diameter is taken as 8 mm. The specific cutting energy κt =

644 MPa and proportionality factor κn = 0.37. The immersion ratio (i.e. 
ae/D) is considered to be 0.05, and the feed rate is held constant at 0.01 
mm/tooth. Other simulation parameters are listed in Table 1, and a 
high-speed milling process with Ω = 1 × 104 ∼ 2.6 × 104 rpm is 
analyzed. 

Fig. 2 demonstrates the stability of the milling system. Using the 
semi-discretization, the instability type and the corresponding chatter 
frequencies, in addition to the stability itself, can be determined by 
analyzing the eigenvalues of the Floquet transition matrix [14]. As 
demonstrated in Fig. 2 (a), the stable and chatter regions are bounded by 
the solid black line. Red and green dots denote the Neimark-Sacker 
bifurcation lobes that lead to the quasi-periodic chatter and flip bifur
cation lobes that lead to the periodic-2 chatter, where the eigenvalues 
penetrate the unit circle in the negative real and conjugate complex 
forms, respectively [35]. Lens-like structures with periodic-2 and 
quasi-periodic boundaries as the bottom and upper arcs illustrate a 
transition from premature to fully developed chatter, which is a com
mon scenario in low-immersion milling [35]. In this regard, periodic-2 
motion acts as a presage of the final malfunction. Four different cut
ting conditions with corresponding eigenvalues, denoted as A 
(Ω = 1 × 103 rpm, ap = 1 mm), B (Ω = 13 × 103 rpm, ap = 1.7 mm), C 
(Ω =17 × 103 rpm, ap = 2.5 mm), and D (Ω = 25 × 103 rpm, ap = 1.05 
mm) in Fig. 2 (a), respectively, indicate the typical stable, 
pre-instability, chatter, and post-instability states. 

In this study, particular attention is given to the distinct spectral 
structures of the responses under different states. Denoting the chatter 
frequency1 with fc, the spectral components arising in the stable, quasi- 
periodic, and periodic-2 responses, respectively, are given by (where 
“TP” stands for “tooth passing”) [14] 

Table 1 
Simulation parameters of the milling system [6].   

Mass (kg) Stiffness (N m− 1)  Damping (N s m− 1)  

Tool (x)  2.01× 10− 2  4.14× 105  1.56  

Tool (y)  1.99× 10− 2  4.09× 105  1.60  

Workpiece (y)  56.75  7.15× 106  1.68× 103   

1 Note that the chatter frequency herein follows the definition in the nu
merical semi-discretization analysis [14]. It is not necessarily the peak fre
quency in the spectrum when chatter occurs as specified in many papers where 
the analytical stability analysis is used [48]. 
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fstable = {kfTP} =

{
kNΩ
60

}

(Hz), k = 0, ± 1, ± 2,⋯,

fquasi =

{
kNΩ
60

± fc,quasi

}

(Hz), k = 0, ± 1, ± 2,⋯,

fp-2 =

{
kNΩ
60

± fc,p-2

}

=

{
kNΩ
60

±
NΩ
120

}

(Hz), k = 0, ± 1, ± 2,⋯,

(8)  

where the chatter frequency of the quasi-periodic type is an irrational 
multiple (i.e., ƛfTP where ƛ denotes an irrational number between 0 and 
1), while that of the periodic-2 type is exactly half of the tooth-passing 
frequency (i.e., 0.5fTP), as shown in Fig. 2 (b). 

As Eq. (8) demonstrates, infinite harmonics exist in the spectrum 
during stable cutting, and more complex components appear when 
chatter occurs, leading to an intricate spectral distribution. Such features 
are not physically meaningful [21]. An intrinsic interpretation of milling 
responses can be achieved by applying the signal model of intra-wave 
modulations, a class of inherent characteristics in dynamical systems 
[21]. Such a model, along with an efficient approach to extract the 
embedded intra-wave modulation features, will be introduced in Section 
3. 

3. Methodology 

3.1. Signal model 

The response signal from the milling system has strongly time- 
varying attributes, and can be modeled as [23]. 

s(t)=
∑K

k=1
ck(t) =

∑K

k=1
ak(t)cos

(

2π
∫ t

0
fk(τ)dτ+ϕk

)

, (9)  

where a total of K so-called nonlinear chirp modes [36] constitute the 
signal. The initial phase, instantaneous amplitude (IA), and instanta
neous frequency (IF) of the k-th mode ck(t) are denoted by ϕk, ak(t), and 
fk(t), respectively. In terms of intra-wave modulations, model Eqn (9) 
can be further specified as [23] 

s(t)=
∑K

k=1
wk(t)=

∑K

k=1
ak(t)cos

(
2πfbase,kt+ εFM,k sin

(
2πfFM,kt+ θk

)
+ϕk

)
,

(10)  

where the IF of the k-th intra-wave modulated mode wk(t), a particular 
family of nonlinear chirp modes [36], is given by 

fk(t)= fbase,k + εFM,kfFM,k cos
(
2πfFM,kt+ θk

)
, (11)  

which demonstrates an IF oscillating sinusoidally around the center 
value fbase,k, with fFM,k as the frequency, εFM,kfFM,k as the range, and θk as 
the initial phase. Using Bessel functions [31], a series expansion of the 
mode wk(t) can be expressed as 

wk(t) =
∑+∞

n=− ∞
Jn
(
εFM,k

){
ak(t)cos

(
2π
(
fbase,k + nfFM,k

)
t+ nθk +ϕk

)}
, (12)  

where Jn( ⋅) represents the Bessel function of the first kind and the n-th 
order [31]. 

Infinitely many sidebands centered on fbase,k (see Eq. (12)) justify the 
mathematical consistency between the intra-wave modulated mode and 
the spectral distribution discussed in Section 2.2. Further investigation is 
necessary to determine a deeper relationship that links the modulation 
patterns with cutting states. However, analysis of such signals is a tricky 
problem. Multiple wide-band modes wk(t), k = 1,2,⋯,K in the signal 
Eqn (10) cumulatively lead to an overlapped spectrum. Therefore, 
narrow-band filter-bank-based methods such as VMD [27] cannot work 
in such circumstances. The well-known HHT [21] technique, proficient 
in addressing such situations though, is difficult to put into practice 
because of its extremely low robustness. The recently proposed INCMD 
approach [23] that combines the ideas of VMD and HHT is particularly 
designed to analyze wide-band multicomponent signals. Based on 
INCMD, the development of an effective strategy for capturing 
intra-wave modulations is described in Sub-section 3.2. 

3.2. Iterative nonlinear chirp mode decomposition (INCMD)-based 
strategy for capturing intra-wave modulations 

Similar to the VMD [27], the INCMD [23] addresses the problem of 
signal mode reconstruction under the framework of variational opti
mization. Both following the idea of demodulating each mode and mini
mizing its bandwidth [27], distinctions between these two methods lie in 
the demodulation strategy itself. Unlike the pure frequency-shift oper
ation implemented in the VMD, the INCMD manages to find a frequency 

Fig. 2. Stability of the milling system. (a) Stability lobe. (b) Chatter frequencies (1X and 0.5X stand for the tooth passing frequency and half of the tooth passing 
frequency respectively). 
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function ̃fk(t) such that a pair of fully demodulated modes based on the 
signal model Eqn (9) can be obtained as [23] 

cd1
k (t) = ak(t)cos

(

2π
∫ t

0

(

fk(τ) − f̃ k(τ)
)

dτ + ϕk

)

,

cd2
k (t) = − ak(t)sin

(

2π
∫ t

0

(

fk(τ) − f̃ k(τ)
)

dτ + ϕk

)

.

(13) 

Through the re-modulation of the quadrature constituents cd1
k (t) and 

cd2
k (t) in Eq. (13), the reconstructed mode ck(t) can be expressed as 

ck(t) = cd1
k (t)cos

(

2π
∫ t

0
f̃ k(τ)dτ

)

+ cd2
k (t)sin

(

2π
∫ t

0
f̃ k(τ)dτ

)

, (14)  

based on which the IA function ak(t) is given by 

ak(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
cd1

k (t)
)2

+
(
cd2

k (t)
)2

√

. (15) 

Ideal demodulation can be achieved when the estimated IF f̃ k(t) is 
exactly the true IF fk(t) itself, where cd1

k (t) and cd2
k (t) will have the most 

compact spectrum [36]. In this regard, the optimal fk(t) can be deter
mined by solving an optimization problem as [23] 

min
cd1

k (t), cd2
k (t), f̃ k(t)

{⃦
⃦cd1

′′

k (t)
⃦
⃦

2

2 +
⃦
⃦cd2

′′

k (t)
⃦
⃦

2

2

}
,

s.t. sc(t) = cd1
k (t)cos

(

2π
∫ t

0
f̃ k(τ)dτ

)

+ cd2
k (t)sin

(

2π
∫ t

0
f̃ k(τ)dτ

)

+ cres,

(16)  

where the squared ℓ2 norm of the second-order derivative (i.e., ‖(⋅)′′‖2
2) 

acts as an operator to evaluate the mode bandwidth [23], and cres is the 
residual after the mode ck(t) is removed from the current signal sc(t). To 
extract modes in the descending order of energy, a greedy optimizer is 
applied where the objective function to be minimized can be expressed 
as [23] 

Wρ

(

cd1
k , cd2

k , f̃k

)

=
⃦
⃦Dcd1

k

⃦
⃦2

2 +
⃦
⃦Dcd2

k

⃦
⃦2

2 + ρ
⃦
⃦sc −

(
φ1

kcd1
k + φ2

kcd2
k

)⃦
⃦2

2, (17)  

which is in the discrete-time form with ρ denoting a penalty coefficient, 
D representing a second-order difference matrix, and ϕ1

k, ϕ2
k being two 

phase matrices given by 

ϕ1
k = diag[cos(βk(t0)), cos(βk(t1)), ⋯, cos(βk(tN− 1)) ],

ϕ2
k = diag[sin(βk(t0)), sin(βk(t1)), ⋯, sin(βk(tN− 1)) ],

(18)  

where βk(t) = 2π
∫ t

0 f̃ k(τ)dτ. 

The constrained optimization problem (17) is addressed using the 
efficient alternating direction method of multipliers (ADMM) [37]. 
Optimal solutions for cd1

k , cd2
k and fk can be updated iteratively as [23] 

cd1*
k = cd1

k

⃒
⃒

∂wρ

(
cd1

k , cd2
k , f̃k

)/
∂cd1

k =0
=

(
(
φ1

k

)T φ1
k +

1
ρDT D

)− 1(
φ1

k

)T sc,

cd2*
k = cd2

k

⃒
⃒

∂wρ

(
cd1

k , cd2
k , f̃k

)/
∂cd2

k =0
=

(
(
φ2

k

)T φ2
k +

1
ρDT D

)− 1(
φ2

k

)T sc,

f*
k = fk +

(

I + 2
μDT D

)− 1

Δf*
k,

(19)  

with 

Δfk
*

(

t

)

= − tan− 1

(
cd2

k
*( t
)

cd1
k

*(
t
)

)′

=
1

2π
cd1

k
*
′ (

t
)
cd2

k
*( t
)
− cd2

k
*
′ (

t
)
cd1

k
*( t
)

((
cd1

k
*( t
))2

+
(
cd2

k
*( t
))2) , (20)  

where I represents an identity matrix and μ denotes another penalty 
coefficient. Detailed derivations of Eqs. (19) and (20) are available in 
Ref. [23]. By substituting the latest available updates, the k-th mode can 
be reconstructed as 

ck
* =ϕ1

k
*cd1

k
*
+ ϕ2

k
*cd2

k
*
. (21) 

To initiate these iterative updates, the peak frequency of the power 
spectrum of the current signal sc is obtained as a constant initial IF f0

k , 
and the relative difference between the two latest updated modes is 
considered as the convergence criterion expressed as 
⃦
⃦ck

i − ck
i− 1
⃦
⃦2

2

/⃦
⃦ck

i− 1
⃦
⃦2

2⩽ε. (22) 

The termination of the decomposition process is controlled by the 
result of the Ljung-Box Q-test [23] of the current signal sc (i.e., the mode 
number K is automatically determined [23]). Applying the INCMD 
technique, all nonlinear modes {ck} with their IAs {ak} and IFs {fk} can 
be obtained. 

Considering intra-wave modulations in signal model Eqn (10), dis
tribution characteristics including {ak}, {fbase,k}, and {ϕk} can be 
analyzed using a two-dimensional INCMD spectrum as 

Spec
(
ti, fj

)
=
∑K

k=1
ak,iδ

(
fj − fk,j

)
, (23)  

where i = 0, 1, ⋯, N1 − 1, j = 0, 1,⋯,N2 − 1 denotes a N1 × N2 time- 
frequency mesh plane and δ is the Dirac delta function. Oscillation 

Fig. 3. Flow chart of the proposed INCMD-based strategy for capturing intra-wave modulations.  
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characteristics including {εFM,k}, {fFM,k}, and {θk} can be analyzed 
through the Fourier analysis of extracted IFs {fk} (i.e., power spectra of 
{fk}), according to Eq. (11). The entire strategy for capturing the intra- 
wave modulations is illustrated in Fig. 3. 

3.3. An example: Stokes wave 

We provide an example to demonstrate the effectiveness of the above 
strategy. A classic second-order Stokes wave, which is a perturbation 
series approximation of nonlinear marine wave motion [29], is 

expressed as 

S(t)=
1
2
a2k + a cos ωt +

1
2
a2k cos 2 ωt, (24)  

where a denotes the wave amplitude, ω is the angular frequency, and k is 
the wavenumber. Taking a = 2, ω = 2π/32 rad s− 1, and k = 0.2, the 
temporal waveform is generated as shown in Fig. 4 (a), where the white 
Gaussian noise with a standard deviation of 0.5 is added to the original 
signal (black line) to obtain the noisy version (blue line). 

Fig. 4. Stokes wave [29]. (a) Temporal waveform (the blue line denotes noisy version while the black line denotes noise-free version). (b) Power spectrum (noise-free 
version only). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Time-frequency analysis of the noisy Stokes wave using different tools. (a) Morlet scalogram. (b) SST spectrum. (c) HHT spectrum. (d) INCMD spectrum (the 
black line denotes the theoretical IF obtained in Eq. (26)). (e) Power spectrum of the IF extracted from the INCMD spectrum. 

Fig. 6. Signal decompositions of the noisy Stokes wave using different tools. (a) INCMD. (b) VMD. In Mode 1 the solid blue line denotes the extracted mode while the 
broken black line denotes the noise-free Stokes wave. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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The power spectrum of the wave signal (see Fig. 4 (b)) presents a 
superposition of two harmonics, which agrees mathematically with Eq. 
(24). However, such interpretations make no physical sense as the un
derlying process is inseparable. Trigonometric identities can be applied 
to Eq. (24) to express the Stokes wave in a time-varying form as [23] 

S(t) = 1
2a

2k + α(t)cos(ωt + ϕ(t) ), (k≪1)

with ϕ(t) = tan− 1 a2k sin ωt/2
a + a2k cos ωt/2

≈
1
2

ak sin ωt,

α(t) =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

a2 + (a2k/2)2
+ a3k cos ωt

√

≈ a +
1
2

a2k cos ωt.

(25) 

From the phase function ϕ(t) in Eq. (25), the theoretical IF can be 
worked out as 

IF=
1

2π (ω+ ϕ̇(t)) ≈
1

2π

(

ω+
1
2

akω cos ωt
)

. (26) 

The intra-wave modulated IF in Eq. (26) is directly associated with 
the periodic harmonic distortion in the Stokes wave (i.e., the sharp crest 
and flat trough, see Fig. 4 (a)), which is a possible mechanism for the 
formation of rogue waves [38]. 

Different approaches are utilized to achieve the time-frequency 
analysis of the Stokes wave, as shown in Fig. 5. Fourier-based wavelet 

analysis (see Fig. 5 (a)) provides results consistent with that in the power 
spectrum, and the wavelet-based SST technique (see Fig. 5 (b)) only 
sharpens the original distribution. The presence of noise undermines the 
effectiveness of the HHT method, making the spectrum unreadable (see 
Fig. 5 (c)). The time-frequency distribution obtained by the INCMD 
agrees well with the theoretical result (see Fig. 5 (d)), clearly capturing 
embedded intra-wave modulations as given in Eq. (26). Further Fourier 
analysis of the IF shows the 1X oscillating frequency (see Fig. 5 (e)), as 
Eq. (26) indicates. The signal decomposition results of the noisy signal 
by INCMD and VMD, respectively, are compared in Fig. 6. Owing to the 
wide-band demodulation framework of INCMD, the original Stokes 
wave is recovered with high accuracy (see Fig. 6 (a)), while the narrow- 
band filter-bank-based VMD failed this task (see Fig. 6 (b)). 

It has been demonstrated that a physically meaningful character
ization of the Stokes wave can be achieved using the INCMD-based 
strategy. With the aid of such an approach, intra-wave modulation 
features extracted from milling responses similarly capture underlying 
dynamic processes, which will be demonstrated in simulated and 
experimental results in Sections 4 and 5. 

Fig. 7. Studied tool vibrations. (a, b, c, d) Temporal waveforms. (e, f, g, h) Power spectra (dashed black lines denote the tooth-passing frequency and its multiples). (i, 
j, k, l) Phase portraits (red dots represent the Poincaré mapping). Four sets of responses from the top to the bottom correspond to the stable, pre-instability, chatter, 
and post-instability state, marked with A, B, C, and D, respectively, in Fig. 2. Simulation duration is taken as 0–1 s and the steady-state during 0.88–1 s is truncated for 
analyses. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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4. Intra-wave modulated responses in milling processes 

In this section, simulated milling responses are investigated with the 
assistance of the INCMD-based approach introduced in Section 3.2, with 
ρ = 1× 10− 5, μ = 1× 10− 5, and ε = 1 × 10− 8 (see Fig. 3) set for the 
INCMD if without a special note in following analyses. The system pa
rameters remain the same as those used in Section 2.2, and the standard 
dde23 routine in MATLAB® is employed. We consider four cases 
mentioned in Section 2.2: stable cutting, pre-instability, chatter, and 
post-instability, which are denoted as A, B, C, and D, respectively, in the 
stability lobe (see Fig. 2 (a)). 

The basic characterization of the studied tool vibrations is shown in 
Fig. 7. The temporal waveforms (see Fig. 7 (a, b, c, d)) demonstrate a set 
of responses with increasing amplitude and gradually more severe 

shock. The periodic-1, periodic-2, quasi-periodic, and periodic-4 prop
erties of tool motions are revealed in the phase portraits (see Fig. 7 (i, j, 
k, l)). Fig. 7 (e, f, g, h) shows the power spectra with the prominent 
components marked, the structures of which are in agreement with the 
theoretical predictions expressed in Eq. (8). Such frequency-domain 
descriptions are, however, incomprehensible from a physical point of 
view. Wavelet analysis is applied for a time-frequency description, as 
shown in Fig. 8. Besides the information in the power spectra, the fre
quency oscillations, though vaguely captured, can be observed in the 
Morlet scalograms. Moreover, the oscillation pattern changes as the 
cutting state transforms. 

To ascertain the existence of all the above phenomena and elucidate 
the relationship between them, the intra-wave modulation features of 
four sets of responses are extracted and shown in Fig. 9. We discuss the 

Fig. 8. Morlet scalograms of four sets of responses given in. (a) Stable cutting. (b) Pre-instability. (c) Chatter. (d) Post-instability.  

Fig. 9. Intra-wave modulations extracted 
from four sets of responses given in Fig. 7. (a, 
e) Stable cutting. (b, f) Pre-instability. (c, g) 
Chatter. (d, h) Post-instability. Left-side 
panels show INCMD spectra. Right-side 
panels show power spectra of IFs of intra- 
wave modulated modes (dashed black lines 
denote the tooth-passing frequency and its 
multiples, and different colors represent 
different modes). (For interpretation of the 
references to color in this figure legend, the 
reader is referred to the Web version of this 
article.)   
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results next. 

4.1. Stable cutting 

From the stable cutting response, four modes are extracted, the IFs of 
which oscillate sinusoidally around 1X, 4X, 5X, and 6X, respectively (see 
Fig. 9 (a)). Fourier analysis of the four IFs indicates a unified modulating 
frequency at 1X. This phenomenon implies the synchronous fluctuation 
of the transient vibrating frequency, which results from the stiffening 
effect [30], a dynamic process led by periodic cutting force impacts. Note 
that although the stiffening effect is discussed considering the 
rotor-to-stator rubbing system in Ref. [30], this phenomenon is common 
in intermittent milling as the workpiece and tool act as the stator and 
rotor, respectively, to some degree. As stated in Ref. [30], “the interaction 
between the rotor and stator equals to the addition of a transient support to 
the rotor, the transient stiffness of the system increases”; the periodic 
engagement between the tool and the workpiece causes periodic 
time-varying stiffness, and thus leads to oscillating IFs. The stiffening 
effect can also be observed in the cracked rotor [39] and cracked beam 
[40] systems, another two well-known impact systems with 
time-varying stiffness. 

Such a physical interpretation is verified further in Fig. 10. The 
extracted 1X temporal mode (see Fig. 10 (b)) undergoes a relaxation 
oscillation [41] in which the tension is caused by the interaction between 
the tool and the workpiece, and relaxation occurs during the free vi
bration of the tool. The cutting force impact is accompanied by the peak 
of the oscillating IF, as shown in Fig. 10 (a, c), demonstrating the stiff
ening effect. 

Substituting two essential parameters, the frequency center fbase and 
the modulation frequency fFM, into the expanded mode in Eq. (12), the 
spectral set can be obtained as  

which constitute the fTP (i.e., 1X) and its multiples, accounting for the 

real spectral distribution (see Fig. 7 (e)). 

4.2. Pre-instability: periodic-2 motion 

Preceding the quasi-periodic chatter, periodic-2 motion is generally 
not regarded as cutting instability because it still belongs to controllable 
periodic vibrations [35]. However, it is unstable in the sense of 
dynamical systems because it originates from the flip bifurcation of the 
initial periodic-1 motion. Periodic-2 motion, therefore, acts as a 
pre-instability. 

Although the modulation pattern in Fig. 9 (b) resembles that in Fig. 9 
(a), the modulation frequency has switched to 0.5X. The impact-induced 
stiffening effect has developed into a non-synchronous yet periodic 
process that occurs once in every two rotating periods. Applying a 
similar substitution, the spectral set can be obtained as 

fp-2 ={[(2×)+n1(0.5×)], [(3×)+n2(0.5×)], [(4×)+n3(0.5×)]} (fTP),

nm =0, ±1, ±2,⋯; m=1, 2, 3,
(28)  

which leads to the rise of half-order harmonics between adjacent 
integer-order harmonics, as shown in Fig. 7 (f). 

4.3. Quasi-periodic chatter 

Quasi-periodic chatter is a notorious instability phenomenon that 
results from the Neimark-Sacker bifurcation of the periodic motion. 
Essentially different from the two cases discussed above, the IFs here 
exhibit a seemingly random oscillation (see Fig. 9 (c)). The power 
spectrum of IFs, presenting a broad band though, shows a noticeable 
peak at 0.37X, which is the corresponding theoretical chatter frequency 
(see Fig. 2 (b)). Irrational multiples exist in the spectrum as 

Fig. 10. Stiffening effect in intermittent milling processes. (a) Simulated cutting force under stable cutting. (b) 1X temporal mode extracted from the stable cutting 
response using the INCMD. (c) Close-up view of Fig. 9 (a) corresponding to the IF of the 1X mode. 

fstable = {[(1 × ) + n1(1 × ) ], [(4 × ) + n2(1 × ) ], [(5 × ) + n3(1 × ) ], [(6 × ) + n4(1 × ) ] } (fTP),

nm = 0, ± 1, ± 2,⋯; m = 1, 2, 3, 4,
(27)   
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fquasi = {[(2 × ) + n1(0.37 × ) ], [(3 × ) + n2(0.37 × ) ] } (fTP),

nm = 0, ± 1, ± 2,⋯; m = 1, 2.
(29) 

Quasi-periodic engagements between the tool and workpiece bring 
about the tangled side bands given in Eq. (29), as shown in Fig. 7 (g). 

4.4. Post-instability: periodic-n motion 

As chatter develops, the periodic response may emerge again 
through the secondary flip bifurcation of quasi-periodic chatter [35], as 
shown in Fig. 7 (d). The modulation frequency at 0.25X (see Fig. 9 (h)) 
leads to the spectral distribution of the periodic-4 motion as 

fp− 4 ={[(2×)+ n(0.25×)]} (fTP), n= 0, ± 1, ± 2,⋯, (30)  

which agrees with that shown in Fig. 7 (h). Such a mechanism can be 
generalized to periodic-n motion, the power spectrum of which would 
exhibit the 1/n-th order harmonics [42]. 

4.5. Discussions 

4.5.1. Energy concentration in chatter 
In addition to the evolution of the modulation pattern discussed 

above, the number of extracted modes decreases as chatter becomes 
more severe (see Fig. 9 (a, b, c, d)). This phenomenon implies the con
centration of energy, which has also been observed by Chen et al. [43] 
who used the Rényi entropy, and Cao et al. [44] who used the standard 
deviation to characterize the dispersion in the distribution of spectral 
sequences of the milling responses. According to these studies, the en
ergy of vibration responses will be absorbed into a certain resonance 
band both in the frequency and time-frequency domains when chatter 
occurs. 

We calculated the normalized Rényi entropy values [43] (see 
Appendix A for detailed formulas) of the power spectra (see Fig. 7 (e, f, g, 
h)) and Morlet scalograms (see Fig. 8) of four sets of simulated re
sponses, and the results are shown in Fig. 12 (a). The decreasing entropy 
quantitatively describes the gathering energy in the frequency and 
time-frequency domains, which is consistent with the conclusions 
derived in Ref. [43]. As the greedy strategy is adopted in the INCMD 
algorithm (i.e., the extracted mode in each recursion takes away as much 
energy as possible within a certain bandwidth), the concentration of 
energy within a small bandwidth (see Fig. 12 (b)) naturally reduces the 
obtained modes, as mentioned in Section 3.2. 

4.5.2. Physics of intra-wave modulation and consistency with spectral 
distribution 

Because the series model Eqn (12) can be truncated, we expand the 
extracted mode wk(t) to the first three orders as 

Fig. 11. Bessel functions for the first three orders of the first kind 
(J0 ∼ J2) [31]. 

Fig. 12. Energy concentration when chatter occurs. (a) Normalized Rényi entropy values of power spectra and Morlet scalograms of four sets of simulated responses. 
(b) Energy concentration in time-frequency domain (where “BW” means “bandwidth"). 

Fig. 13. Mathematical consistency between intra-wave modulations and spectral distributions. (a, b, c, d) correspond to four sets of responses given in Fig. 7, where 
red lines are the true power spectra of simulated responses as shown in Fig. 7 (e, f, g, h), while blue triangles denote the coefficients of harmonics obtained using the 
truncated model Eqb (31). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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wk(t)=
∑

n=0,±1,±2
Jn
(
εFM,k

){
ak(t)cos

(
2π
(
fbase,k + nfFM,k

)
t+ nθk + ϕk

)}
, (31)  

where the Bessel functions Jn(⋅)n=0,1,2 of the first kind are shown in 
Fig. 11 (note that the relationship J− n(x) = (− 1)nJn(x) exists [31]), 
whose variation pattern is complex. 

The truncated model Eqn (31) is essentially the superposition of a 
finite number of harmonics. In Sections 4.1–4.4, the oscillation param
eters including the center frequency fbase and modulation frequency fFM 
have been substituted into Eq. (12) to obtain the spectral set. In fact, all 
the descriptive constant parameters in Eq. (12) can be acquired after the 
intra-wave modulation analysis, as demonstrated in Section 3.2 (see 

Fig. 3). By substituting the complete parameter set into Eq. (31), sam
pling the Bessel functions at specific values, and combining like terms, 
we can finally obtain four sets of harmonics corresponding to the vi
bration responses in Fig. 7. The coefficients of these harmonics are 
plotted in Fig. 13 with the true power spectra for comparison. Perfect 
matching can be observed between the spectral peaks obtained by two 
methods, which strongly demonstrates the mathematical rigor of the 
characterization using intra-wave modulations and its consistency with 
spectral distributions. 

The classic Fourier transform expands the signal using a set of trig
onometric bases that are linear and stationary. By contrast, nonlinear 
and nonstationary bases are adaptively selected in intra-wave 

Fig. 14. Simulated tool vibrations considering the two-tooth tool. (a) Stability lobe. (b, c, d) Temporal waveforms. (e, f, g) Phase portraits. (h, i, j) Power spectra. (k) 
Cutting force. Three panels from the left to the right in (b, c, d), (e, f, g), and (h, i, j) correspond to the stable (marked with E in (a)), stable with runout at the 10% 
level, and P-2 chatter (marked with F in (a)) state, respectively, while (k) corresponds to the stable state with runout at the 10% level. Simulation duration is taken as 
0–1 s and the steady-state during 0.97–1 s is truncated for analyses. Fig. 7 can be referred to for the meaning of other notations. 

Fig. 15. Intra-wave modulation analyses of three sets of responses given in Fig. 14. (a, b, c) INCMD spectra. (d, e, f) Power spectra of IFs. (g) Resulting noise level 
versus the tool runout level. 
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modulation analyses. When processing the milling responses, the 
resulting bases are a series of parsimonious harmonic-like single modes, 
the IFs of which oscillate around the tooth-passing frequency, syn
chronized with intermittent cutting force impacts as demonstrated in 
Section 4.1. Some integer- and non-integer-order harmonics are 
embedded in the modulation features but do not arise explicitly as they 
do in the power spectra. Taking the case of stable cutting as an example, 
all six harmonics from 1X to 6X can be observed in the power spectrum 
(see Fig. 7 (e)), but only four intra-wave modulated modes centered on 
1X, 4X, 5X, and 6X are extracted, as shown in Fig. 9 (a). 

In other words, we can always obtain a sparse time-frequency rep
resentation of milling responses using intra-wave modulation analyses. 
Based on the discussion in Section 4.5.1, this comes as no surprise 
because the extracted modes will be as few as possible with greedy al
gorithms. From this viewpoint, these redundant harmonics do not exist 
physically because dynamical systems in nature can always be charac
terized with sparsity [45,46], as concluded by Huang when he employed 
the Hilbert spectrum to interpret the harmonic distortion of nonlinear 
Stokes waves [29] (note that this example is also given in Section 3.3). 

4.5.3. Impact of tool runout on accuracy 
In the simulations above, the tool teeth number is set as one to 

exclude the runout effect. In practice, tool runout is inevitable and could 
have an impact on identification accuracy when using the proposed 
method. Considering the two-tooth tool (i.e., N = 2) with runout, be
sides the tooth-passing components, the spindle rotating frequency (i.e., 
0.5X) and its multiples will arise in the power spectrum. As discussed in 

Section 4.1–4.4, when quasi-periodic or periodic-n (n > 2) chatter oc
curs, the modulation frequency is less than 0.5X and thus “0.5X” can be 
regarded as the new “1X” [15]. However, when periodic-2 chatter oc
curs, the 0.5X, along with its multiples caused by the instability, will 
coincide with the same frequencies caused by the runout. Such prob
lematic situations are discussed in detail here. 

For simplicity, the milling model in Section 2.1 is still used, and the 
tool runout is described by a pair of imbalance factors because the chip 
load will be distributed unevenly on two teeth when runout exists [47]. 
Eq. (4) is modified as 
{

Fx,j(t) = ρj
(
− Fr,j(t)sin

(
φj(t)

)
− Ft,j(t)cos

(
φj(t)

))
,

Fy,j(t) = ρj
(
− Fr,j(t)cos

(
φj(t)

)
+ Ft,j(t)sin

(
φj(t)

))
,

(32)  

where all the elements other than the added weighting factors ρj remain 
unchanged. When the tool is perfectly symmetrical ρ1 = ρ2 = 1, 
whereas ρ1 ∕= ρ2 when runout exists. The tool runout level is defined 
here as (|ρ1 − ρ2|)/(ρ1 + ρ2), e.g., "ρ1 = 0.9, ρ2 = 1.1" means the runout 
at the 10% level. 

Because the runout at low levels barely affects the stability boundary 
[15], ρ1 = ρ2 = 1 is set first, and semi-discretization is used to obtain the 
stability lobe in Fig. 14 (a). The stable cutting and periodic-2 chatter, 
marked with E (Ω = 18 × 103 rpm, ap = 4 mm) and F (Ω = 18 × 103 

rpm, ap = 5 mm) in the lobe, respectively, are considered, and stable 
cutting with runout at the 10% level is also simulated. The temporal 
waveforms, phase portraits, and power spectra of the three sets of re
sponses are shown in Fig. 14 (b, c, d), (e, f, g), and (h, i, j), respectively. 
The variation in the cutting force acting on two teeth due to runout is 

Fig. 16. Experimental setup of the milling system. (a) Picture. (b) Schematic.  
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clearly shown in Fig. 14 (k), leading to a considerable amplitude at 0.5X 
and 1.5X frequencies and the split of the Poincaré attractor. As a result, 
periodic-2 chatter and stable cutting cannot be distinguished based on 
the power spectra or phase portraits. 

The runout effects also disturb the intra-wave modulation analyses, 
but the resulting error could be negligible. As Fig. 15 (a, b, c) shows, the 
INCMD spectra under stable cutting are almost the same with and 
without runout. When runout exists, an extremely small spike can be 
observed at 0.5X in the power spectrum of IFs, whose amplitude is only 
2% of that at 1X, whereas for periodic-2 chatter, IFs oscillate purely at 
0.5X, as concluded in Section 4.2. 

Considering the spike at 0.5X as the unwanted noise and defining the 

noise level as the ratio of the spike amplitude to the 1X amplitude in the 
PSD of IFs (the highest among multiple peaks is taken), we conduct tests 
at different tool runout levels. The results are shown in Fig. 15 (g). An 
acceptable threshold of the runout level at 24% is obtained, before 
which the noise remains weak. Although only the two-tooth case is 
discussed here, the coincidence between chatter frequencies and runout 
frequencies appears in any case with an even number of tool teeth. 
Therefore, the conclusions above can be generalized. 

Among the intricate spectral components, critical indicative infor
mation could be submerged and hidden. With the aid of intra-wave 
modulation analyses, weak and fragile dynamic features embedded in 
milling responses are extracted and amplified, which helps to detect 

Fig. 17. Measured FRFs of the milling system. (a, b) Impact test for the tool (left) and the resulting FRF (right). (c, d) Impact test for the workpiece (left) and the 
resulting FRF (right). 

Fig. 18. The first set of experimental data (2% immersion ratio). (a) Milling force signal with the workpiece surface finish. (b, c, d) Three segments of the force signal 
with (e, f, g) their power spectra, corresponding to the S1, S2, and S3 windows marked in (a). 
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chatter in a premature phase. We validate this experimentally in Section 
5. 

5. Experimental verification 

5.1. Setup 

This section describes the dedicated experiments that were con
ducted to verify the conclusions obtained in Section 4. Fig. 16 shows the 
experimental setup that corresponds to the schematic in Fig. 1. Milling 
tests were performed on a five-axis DMU 70V vertical machining center 
with a spindle speed of up to 10,000 rpm. The cantilevered aluminum 
workpiece was clamped in a vice with the free-end dimension of 100×
100 × 3 mm. One side of the free end was up-milled by a high-speed- 
steel two-tooth tool with a diameter of 10 mm, where the second 
tooth was ground off. Because the force signal is subjected to the least 
interference while the fidelity of measured displacements and acceler
ations are greatly affected by the placement of sensors [11], the milling 
force is analyzed here. The Kistler® 9170A rotating dynamometer, 
which has the cutting frequency of 2 kHz, was used to obtain milling 
forces in the feed and its normal directions. All measured data were 
collected using an acquisition device at a sampling frequency of 10 kHz. 

Standard impact tests were conducted to measure the structural 

resonance, and the resulting frequency response functions (FRFs) are 
shown in Fig. 17. In the cutting experiments, the spindle speed was fixed 
at 8000 rpm and the feed was fixed at 0.0125 mm/tooth.2 Tool cuts were 
made at the free end of the workpiece in a 90 mm long track centered 
with respect to the side of the plate. The axial cutting depth increased 
uniformly from 1 mm to 10 mm. Two sets of tests with radial cutting 
depths of 0.2 mm and 0.5 mm (i.e., immersion ratios as 2% and 5%, 
respectively) were conducted. 

5.2. Results 

The first set of experimental data is shown in Fig. 18 (a). The force 
signal in the feed direction (i.e. Fx) and the surface finish of the work
piece are presented. Visible chatter marks did not emerge until half of 
the cutting length (i.e., 5.5 mm axial depth), dividing the machined area 
into Iw and IIw, accordingly. The cutting force, however, exhibits no 
drastic changes in amplitude throughout, except for a conspicuous shock 

Fig. 19. Intra-wave modulations extracted from 
three segments of the first set of experimental 
data. (a, d), (b, e), and (c, f) here correspond to 
(b, c, d) in Fig. 18 respectively. Left-side panels 
show INCMD spectra. Right-side panels show 
power spectra of IFs of intra-wave modulated 
modes (in (d) and (f), different colors represent 
different modes; while in (e) is a cascade plot 
where the spectrum at each cutting length is the 
superposition of that of all modes). (For inter
pretation of the references to color in this figure 
legend, the reader is referred to the Web version 
of this article.)   

Fig. 20. The 1X modes extracted from the (a, c) S1 and (b, d) S3 segments of the first set of experimental data (see Fig. 18 (a)). Left-side panels show temporal modes 
(blue lines) with their IFs (black lines). Right-side panels show power spectra of modes. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 

2 Note that a small feed rate was set since the stiffness of the workpiece used 
here is too low. The tool edge chipping emerges soon if a normal feed rate is set. 
In practical engineering, the method proposed in this paper works under normal 
feed rates larger than 0.1 mm/tooth. 
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near the end of cutting. Using the INCMD spectrum, intra-wave modu
lations of the response are monitored using a sliding window with a size 
of 50 spindle periods. A switch in the modulation pattern is captured at a 
cutting length of 25.6 mm, signifying two phases If and IIf in the 
response. Two window segments S1 and S3 in phase If, IIf, and the 
transition segment S2 across them are given in Fig. 18 (b, d, c), 
respectively. Valuable information can hardly be extracted from their 
power spectra because the tooth-passing components dominate while 
the non-tooth-passing components are too weak to be distinguished 
from noise. 

Extracted intra-wave modulation features (see Fig. 19) demonstrate 
three distinct processes. The incipient segment S1 consists of six modes 
whose IFs oscillate at the 1X frequency (see Fig. 19 (a)), indicating stable 
cutting as discussed in Sub-section 4.1. The above process lasts until the 
periodicity of IFs ceases at the 25.6 mm cutting length. The cascade 
power spectrum of IFs illustrates a transition from stable cutting to 
quasi-periodic chatter, where irrational multiples of the 1X arise pro
gressively (see Fig. 19 (e)). 

With a shock in the force signal at a cutting length of approximately 
87 mm (see Fig. 18 (a)), the chatter becomes fully developed. As Fig. 19 
(c) shows, pseudo-randomly fluctuating IFs embed chatter frequency 
information at 48 Hz, which can be verified by weak sidebands in the 
power spectrum of the response (see Fig. 18 (g)). Such a transformation 
also manifests itself in the extracted 1X modes. While power spectra 
hardly capture the differences (see Fig. 20 (c, d)), relaxation oscillation 
(see Fig. 20 (a, b)) and intra-wave modulation patterns clearly show the 
distinctions between the two modes. In addition, the number of 
extracted modes decreases when chatter becomes more severe, as 
concluded in Section 4. Note that the switch of the modulation pattern 
emerges far earlier than visible chatter marks do (see Fig. 18 (a)). Such 
switches, in this respect, are able to predict, rather than just indicate, the 
coming of the new cutting state. 

With the increase in the immersion ratio, the second set of experi
mental data originates from a more complicated process, as shown in 
Fig. 21 (a). Slight chatter marks appear first before the severe final ones, 
separating the machined area into three parts, Iw, IIw, and IIIw. 

Fig. 21. The second set of experimental data (5% immersion ratio). (a) Milling force signal and the workpiece surface finish. (b, c, d, h, i) Five segments of the force 
signal with (e, f, g, j, k) their power spectra, corresponding to the S1, S2, S3, S4, and S5 windows marked in (a). 
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Fig. 22. Intra-wave modulations extracted 
from five segments of the second set of 
experimental data. (a, f), (b, g), (c, h), (d, i), 
and (e, j) here correspond to (b, c, d, h, i) in 
Fig. 21 respectively. Left-side panels show 
INCMD spectra. Right-side panels show 
power spectra of IFs of intra-wave modulated 
modes (in (f, h, j) different colors represent 
different modes; while in (g, i) are cascade 
plots where the spectrum at each cutting 
length is the superposition of that of all 
modes). (For interpretation of the references 
to color in this figure legend, the reader is 
referred to the Web version of this article.)   

Fig. 23. The 1X modes extracted from the (a, d) S1, (b, e) S3, and (c, f) S5 segments of the second set of experimental data (see Fig. 21 (a)). Left-side panels show 
temporal modes (blue lines) with their IFs (black lines). Right-side panels show power spectra of modes. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

G. Tu et al.                                                                                                                                                                                                                                       



International Journal of Machine Tools and Manufacture 163 (2021) 103705

17

Perplexing fluctuations in amplitude exist throughout the milling force 
though, intra-wave modulation analysis is still applied to comprehend 
the underlying process. Two switches of the modulation pattern are 
captured, suggesting three phases If, IIf, and IIIf in the response. Char
acteristic fractional harmonics in the power spectra of the developed 
stages S3 and S5 in phase IIf, IIIf (see Fig. 21 (g, k)) reveal an ostensibly 
periodic-2 and periodic-3 process, respectively, which is, however, to be 
confirmed. 

As Fig. 22 illustrates, the extraction of intra-wave modulation fea
tures eliminates the need to interpret intricate power spectra. During the 
first transition segment S2, the periodicity of oscillating IFs holds 
throughout, but the period itself elongates at approximately 8.6 mm of 
the cutting length (see Fig. 22 (b)). A transition from stable cutting to 
periodic-2 chatter is clearly captured in the cascade power spectrum of 
IFs, while such time-varying features are totally lost in the power 
spectrum of the original response (see Fig. 21 (f)). A similar transition 
from periodic-2 to periodic-3 chatter can be observed in segment S4 (see 
Fig. 22 (d)), where the period of IFs elongates again at approximately 
61.6 mm of the cutting length, accompanied by the rise of the 1/3-order 
sub-harmonic in the power spectrum of IFs (see Fig. 22 (i)). 

In contrast to the first set of experimental data, the periodicity of the 
response is maintained throughout the second set, which can also be 
observed in the extracted 1X modes (see Fig. 23). In such a case, the 
relaxation oscillation forms of the three modes can be barely distin
guished, whereas the intra-wave modulation patterns are of great help in 
identifying the cutting states. Similarly, periodic-2 and periodic-3 mo
tions precede the emergence of slight and severe chatter marks (see 
Fig. 21 (a)), respectively, verifying the pre- and post-instability attri
butes of these two types of responses, as discussed in Sub-sections 4.2 
and 4.4. In addition, as the chatter intensifies, a decrease in the number 
of extracted modes can be observed in Fig. 22. 

Moreover, from the measured FRFs in Fig. 17 and the power spectra 
under chatter in Figs. 18 and 21, it can be observed that chatter in the 
two experiments originates from the tool resonance (700 Hz) and 
workpiece resonance3 (500 Hz), respectively. Note that such a priori 
information is not needed in intra-wave modulation analyses because 
the derived conclusions in Section 4 are general and not related to the 
detailed system dynamics. 

6. Conclusions 

This study focuses on the intra-wave modulation phenomenon in 
milling processes. A multicomponent signal in which each mode owns a 
time-varying IF and IA is provided to model the milling responses. 
Simple post-processing techniques are combined with INCMD, a 
recently proposed approach for analyzing complex dynamic responses, 
to extract the distribution and oscillation features of the model signal in 
the time-frequency domain. With the aid of such a strategy, intra-wave 
modulations in the noisy Stokes wave, which is subjected to periodic 
harmonic distortion, are accurately extracted. Using this approach, the 
intra-wave modulation patterns of milling responses and the corre
sponding intrinsic physical processes under different cutting states are 
investigated through dynamic simulations and experimental verifica
tion. In addition, the internal relationship between the modulation 
patterns, spectral distributions, and dynamical bifurcations is estab
lished. Some important conclusions are summarized as follows:  

(1) In stable cutting, infinite harmonic processes do not exist but are 
induced by a limited number of intra-wave modulated modes. 
The IFs of these modes are centered on the tooth-passing fre
quency and its multiples (i.e., nX) and are modulated at exactly 
the tooth-passing frequency (i.e., 1X). Such phenomena result 
from the stiffening effect caused by intermittent cutting impacts, 
also accounting for the relaxation oscillation of temporal modes.  

(2) Milling instability is accompanied only by the switch of the 
modulation frequency while the distribution characteristics 
remain unchanged (i.e., IFs of modes still oscillate around the nX 
when chatter occurs), demonstrating the physical meaningless
ness of the non-integer-order harmonics arising in the power 
spectra. Spurious and intricate spectral components can be 
mathematically interpreted by the series expansion of intra-wave 
modulated responses using Bessel functions.  

(3) The modulation frequencies under different cutting states are 
distinct. The incipient periodic-1 motion, the subsequent period- 
2 motion caused by the flip bifurcation, the later quasi-periodic 
motion originating from the Neimark-Sacker bifurcation, and 
the final periodic-n motion led by the secondary flip bifurcation, 
which indicate the stable cutting, pre-instability, chatter, and 
post-instability, respectively, are characterized by the modula
tion frequency at 1X, 1/2X, ƛX (ƛ denotes an irrational number 
between 0 and 1), and 1/nX. These frequencies are equal to the 
chatter frequencies derived in bifurcation calculations based on 
the Floquet theory. 

Moreover, it has been observed in experiments that the switch of the 
modulation pattern, which remains noticeable despite perturbation of 
noise, emerges far earlier than visible chatter marks do. In this regard, 
such switches can not only characterize but also predict the new cutting 
state; that is, chatter can be detected in a premature phase, demon
strating the superiority of such a cutting state indicator. 

Complexity in industrial processes necessitates the introduction of 
physically meaningful characterizations to understand intrinsic dy
namics. Intra-wave modulation analyses help mitigate the complexity of 
milling responses, and thus can be expected to further provide new in
sights into the dynamics and control in addition to condition monitoring 
of milling systems, which is our future work. 
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Appendix A. Calculation of Rényi entropy 

The calculation of the normalized Rényi entropy [43] index is detailed in this section. 
Considering the spectral amplitude sequence of the milling response as {X(k), k = 1,2,⋯,N}, the energy-based normalization can be applied to 

obtain a new sequence as 

Y(k)=
X(k)
∑N

k=1
X(k)

, (A.1)  

where Y(k) ranges between 0 and 1, and 
∑

kY(k) = 1. 
Recall that the Rényi entropy parameterized by α is defined as 

Hα(P)=
1

1 − αlog 2

∑M

i=1
(Pi)

α

∑M

i=1
Pi

, α > 0, α ∕= 1, (A.2)  

where {P(i), i= 1, 2,⋯,M} is the complete probability set of a random event. Eqn (A.2) can be generalized to characterize the energy distribution of 
milling responses in the frequency domain as (α is set as 3 following that in Ref. [43]) 

H3(Y)=
1

1 − 3
log 2

∑N

k=1
(Yk)

3

∑N

k=1
Yk

= −
1
2
log 2

∑N

k=1
(Yk)

3
. (A.3) 

The index H3(Y) is normalized further to confine the value to be within the interval [0, 1] and independent of the data length as 

RE(Y)=
H3(Y)
log 2 N

= −
1
2
log N

∑N

k=1
(Y(k))3

. (A.4) 

When dealing with two-dimensional spectra such as the Morlet scalograms shown in Fig. 8 in the main text, the amplitude data distributed in the 
time-frequency mesh plane are extracted and treated as a one-dimensional sequence. Then, the Rényi entropy can also be calculated using the formula 
Eqn (A.4). 

The index RE(Y) is a dimensionless indicator, the value of which will reach the maximum when the spectral data are distributed evenly, that is, 
RE(Y) = 1 if and only if Y(1) = Y(2) = ⋯ = Y(N) = 1/N. When the energy of the response gathers around a certain frequency band, that is, a few 
values are extremely large while others are kept at a low level, the index RE(Y) will become small. 

References 

[1] G. Quintana, J. Ciurana, Chatter in machining processes: a review, Int. J. Mach. 
Tool Manufact. 51 (2011) 363–376, https://doi.org/10.1016/j. 
ijmachtools.2011.01.001. 

[2] M. Eynian, In-process identification of modal parameters using dimensionless 
relationships in milling chatter, Int. J. Mach. Tool Manufact. 143 (2019) 49–62, 
https://doi.org/10.1016/j.ijmachtools.2019.04.003. 

[3] G. Totis, M. Sortino, Polynomial Chaos-Kriging approaches for an efficient 
probabilistic chatter prediction in milling, Int. J. Mach. Tool Manufact. 157 (2020) 
103610, https://doi.org/10.1016/j.ijmachtools.2020.103610. 

[4] D. Li, H. Cao, J. Liu, X. Zhang, X. Chen, Milling chatter control based on 
asymmetric stiffness, Int. J. Mach. Tool Manufact. 147 (2019) 103458, https://doi. 
org/10.1016/j.ijmachtools.2019. 103458. 

[5] X.J. Zhang, C.H. Xiong, Y. Ding, M.J. Feng, Y. Lun Xiong, Milling stability analysis 
with simultaneously considering the structural mode coupling effect and 
regenerative effect, Int. J. Mach. Tool Manufact. 53 (2012) 127–140, https://doi. 
org/10.1016/j.ijmachtools. 2011.10.004. 

[6] B. Balachandran, Nonlinear dynamics of milling processes, Philos. Trans. R. Soc. 
London. Ser. A Math. Phys. Eng. Sci. 359 (2001) 793–819, https://doi.org/ 
10.1098/rsta.2000.0755. 

[7] S. Seguy, G. Dessein, L. Arnaud, Surface roughness variation of thin wall milling, 
related to modal interactions, Int. J. Mach. Tool Manufact. 48 (2008) 261–274, 
https://doi.org/10.1016/j.ijmachtools.2007.09.005. 

[8] E. Budak, Y. Altintas, Analytical prediction of chatter stability in milling—Part I: 
general formulation, J. Dyn. Syst. Meas. Contr. 120 (1998) 22–30, https://doi.org/ 
10.1115/1.2801317. 

[9] T. Insperger, G. Stépán, Updated semi-discretization method for periodic delay- 
differential equations with discrete delay, Int. J. Numer. Methods Eng. 61 (2004) 
117–141, https://doi.org/10.1002/nme.1061. 

[10] P. Huang, J. Li, J. Sun, J. Zhou, Vibration analysis in milling titanium alloy based 
on signal processing of cutting force, Int. J. Adv. Manuf. Technol. 64 (2013) 
613–621, https://doi.org/10.1007/s00170-012-4039-x. 

[11] E. Kuljanic, M. Sortino, G. Totis, Multisensor approaches for chatter detection in 
milling, J. Sound Vib. 312 (2008) 672–693, https://doi.org/10.1016/j. 
jsv.2007.11.006. 

[12] H. Caliskan, Z.M. Kilic, Y. Altintas, On-line energy-based milling chatter detection, 
J. Manuf. Sci. Eng. 140 (2018) 1–12, https://doi.org/10.1115/1.4040617. 

[13] T. Delio, J. Tlusty, S. Smith, Use of audio signals for chatter detection and control, 
J. Eng. Ind. 114 (1992) 146–157, https://doi.org/10.1115/1.2899767. 

[14] T. Insperger, G. Stépán, P. Bayly, B. Mann, Multiple chatter frequencies in milling 
processes, J. Sound Vib. 262 (2003) 333–345, https://doi.org/10.1016/S0022- 
460X(02)01131-8. 

[15] T. Insperger, B.P. Mann, T. Surmann, G. Stépán, On the chatter frequencies of 
milling processes with runout, Int. J. Mach. Tool Manufact. 48 (2008) 1081–1089, 
https://doi.org/10.1016/j.ijmachtools.2008.02.002. 

[16] Z. Dombovari, A. Iglesias, M. Zatarain, T. Insperger, Prediction of multiple 
dominant chatter frequencies in milling processes, Int. J. Mach. Tool Manufact. 51 
(2011) 457–464, https://doi.org/10.1016/j.ijmachtools.2011.02.002. 

[17] J. Feng, M. Wan, T.-Q. Gao, W.-H. Zhang, Mechanism of process damping in 
milling of thin-walled workpiece, Int. J. Mach. Tool Manufact. 134 (2018) 1–19, 
https://doi.org/10.1016/j.ijmachtools.2018.06.001. 

[18] Y. Fu, Y. Zhang, H. Zhou, D. Li, H. Liu, H. Qiao, X. Wang, Timely online chatter 
detection in end milling process, Mech. Syst. Signal Process. 75 (2016) 668–688, 
https://doi.org/10.1016/j.ymssp.2016.01.003. 

[19] A. Honeycutt, T.L. Schmitz, Milling stability interrogation by subharmonic 
sampling, J. Manuf. Sci. Eng. 139 (2017), https://doi.org/10.1115/1.4034894. 

[20] T.L. Schmitz, M.A. Davies, K. Medicus, J. Snyder, Improving high-speed machining 
material removal rates by rapid dynamic analysis, CIRP Ann 50 (2001) 263–268, 
https://doi.org/10.1016/S0007-8506(07)62119-2. 

G. Tu et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.ijmachtools.2011.01.001
https://doi.org/10.1016/j.ijmachtools.2011.01.001
https://doi.org/10.1016/j.ijmachtools.2019.04.003
https://doi.org/10.1016/j.ijmachtools.2020.103610
https://doi.org/10.1016/j.ijmachtools.2019. 103458
https://doi.org/10.1016/j.ijmachtools.2019. 103458
https://doi.org/10.1016/j.ijmachtools. 2011.10.004
https://doi.org/10.1016/j.ijmachtools. 2011.10.004
https://doi.org/10.1098/rsta.2000.0755
https://doi.org/10.1098/rsta.2000.0755
https://doi.org/10.1016/j.ijmachtools.2007.09.005
https://doi.org/10.1115/1.2801317
https://doi.org/10.1115/1.2801317
https://doi.org/10.1002/nme.1061
https://doi.org/10.1007/s00170-012-4039-x
https://doi.org/10.1016/j.jsv.2007.11.006
https://doi.org/10.1016/j.jsv.2007.11.006
https://doi.org/10.1115/1.4040617
https://doi.org/10.1115/1.2899767
https://doi.org/10.1016/S0022-460X(02)01131-8
https://doi.org/10.1016/S0022-460X(02)01131-8
https://doi.org/10.1016/j.ijmachtools.2008.02.002
https://doi.org/10.1016/j.ijmachtools.2011.02.002
https://doi.org/10.1016/j.ijmachtools.2018.06.001
https://doi.org/10.1016/j.ymssp.2016.01.003
https://doi.org/10.1115/1.4034894
https://doi.org/10.1016/S0007-8506(07)62119-2


International Journal of Machine Tools and Manufacture 163 (2021) 103705

19

[21] N.E. Huang, Z. Shen, S.R. Long, M.C. Wu, H.H. Shih, Q. Zheng, N.-C. Yen, C. 
C. Tung, H.H. Liu, The empirical mode decomposition and the Hilbert spectrum for 
nonlinear and non-stationary time series analysis, Proc. R. Soc. London. Ser. A 
Math. Phys. Eng. Sci. 454 (1998) 903–995, https://doi.org/10.1098/ 
rspa.1998.0193. 

[22] P. Zhou, M. Du, S. Chen, Q. He, Z. Peng, W. Zhang, Study on intra-wave frequency 
modulation phenomenon in detection of rub-impact fault, Mech. Syst. Signal 
Process. 122 (2019) 342–363, https://doi.org/10.1016/j.ymssp.2018.12.011. 

[23] G. Tu, X. Dong, S. Chen, B. Zhao, L. Hu, Z. Peng, Iterative nonlinear chirp mode 
decomposition: a Hilbert-Huang transform-like method in capturing intra-wave 
modulations of nonlinear responses, J. Sound Vib. 485 (2020) 115571, https://doi. 
org/10.1016/j.jsv.2020.115571. 

[24] A.R. Messina, V. Vittal, Nonlinear, non-Stationary analysis of interarea oscillations 
via Hilbert spectral analysis, IEEE Trans. Power Syst. 21 (2006) 1234–1241, 
https://doi.org/10.1109/TPWRS.2006.876656. 

[25] A. Veltcheva, C. Guedes Soares, Nonlinearity of abnormal waves by the 
hilbert–huang transform method, Ocean Eng. 115 (2016) 30–38, https://doi.org/ 
10.1016/j.oceaneng. 2016.01.031. 

[26] H.-T. Hsu, W.-K. Lee, K.-K. Shyu, T.-K. Yeh, C.-Y. Chang, P.-L. Lee, Analyses of EEG 
oscillatory activities during slow and fast repetitive movements using holo-Hilbert 
spectral analysis, IEEE Trans. Neural Syst. Rehabil. Eng. 26 (2018) 1659–1668, 
https://doi.org/10.1109/TNSRE.2018.2855804. 

[27] K. Dragomiretskiy, D. Zosso, Variational mode decomposition, IEEE Trans. Signal 
Process. 62 (2014) 531–544, https://doi.org/10.1109/TSP.2013.2288675. 

[28] I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical 
mode decomposition-like tool, Appl. Comput. Harmon. Anal. 30 (2011) 243–261, 
https://doi.org/10.1016/j.acha.2010.08.002. 

[29] N.E. Huang, Z. Shen, S.R. Long, A new view of nonlinear water waves: the Hilbert 
spectrum, Annu. Rev. Fluid Mech. 31 (1999) 417–457, https://doi.org/10.1146/ 
annurev.fluid.31.1.417. 

[30] F. Chu, W. Lu, Stiffening effect of the rotor during the rotor-to-stator rub in a 
rotating machine, J. Sound Vib. 308 (2007) 758–766, https://doi.org/10.1016/j. 
jsv.2007.03.059. 

[31] M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, 
Graphs, and Mathematical Tables, US Government printing office, 1948. 

[32] B. Yan, L. Zhu, Research on milling stability of thin-walled parts based on 
improved multi-frequency solution, Int. J. Adv. Manuf. Technol. 102 (2019) 
431–441, https://doi.org/10.1007/s00170-018-03254-0. 

[33] R.P.H. Faassen, N. van de Wouw, J.A.J. Oosterling, H. Nijmeijer, Prediction of 
regenerative chatter by modelling and analysis of high-speed milling, Int. J. Mach. 
Tool Manufact. 43 (2003) 1437–1446, https://doi.org/10.1016/S0890-6955(03) 
00171-8. 

[34] M.A. Davies, B. Balachandran, Impact dynamics in milling of thin-walled 
structures, Nonlinear Dynam. 22 (2000) 375–392, https://doi.org/10.1023/A: 
1008364405411. 
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