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Intra-wave modulation effects with oscillating time-varying frequencies have been observed in physical systems
including mechanical, ocean, power, and even biological ones. Such phenomena correspond to actual physical
processes with which the underlying dynamics of these systems can be understood. In this work, we study intra-
wave modulation effects in milling processes with the aid of iterative nonlinear chirp mode decomposition
(INCMD), a recently proposed technique for analyzing complex dynamic responses. A nonlinear non-stationary
template signal is provided to model milling vibration responses, and an INCMD-based strategy is developed to
extract embedded modulation features. Through dynamic simulations and experimental verification, it has been
demonstrated that distinct intra-wave modulation frequencies that are exactly equal to theoretical chatter fre-
quencies calculated based on the Floquet theory exist to indicate different cutting states, and milling instability is
accompanied by the variation of such a characteristic quantity. Bessel functions can mathematically relate
explicit modulation patterns with intricate spectral distributions of milling responses. Moreover, the switch of the
modulation pattern, which remains noticeable in the presence of noise, emerges far earlier than visible chatter
marks do, indicating the superiority of the chatter detection and even prediction utilizing intra-wave modulation
features.

1. Introduction semi-discretization [9], which is based on the Floquet theory of periodic

time-varying ordinary differential equations. Stability lobes, although

Milling, especially high-speed milling, is an important precision
machining technology [1]. Understanding milling dynamics has always
been vital because it is the basis for related industrial applications such
as system monitoring [2], prediction [3], and control [4]. Numerous
factors, including the parametric excitation due to periodic cutting in
and out of tool teeth, time-delay caused by regenerative effects [5], and
nonlinearity originating from deformations of processed materials [6],
make the milling system a complex one. Such complexity will be exac-
erbated by chatter, a notorious instability phenomenon in milling pro-
cesses, especially when the workpiece is a thin-walled part with low
stiffness [7].

Forward and reverse system characterization methods can be used to
gain insights into milling dynamics. One of the most mature forward
techniques is lobe diagram plotting [8], which predicts system stability
from the perspective of dynamical bifurcations. Although many strate-
gies exist, a generic approach to obtain the lobe diagram is

helpful in theoretical studies, are difficult to put into practice because of
their vulnerability to volatile system parameters and demand for highly
accurate system identifications [1]. Other forward schemes based on the
mathematical model of physical systems have similar drawbacks.
Reverse characterization aims to comprehend underlying processes
through external system responses, among which vibration-related re-
sponses, including milling forces [10], displacements [11], accelerations
[12], and noises [13], are most commonly utilized because they are easy
to collect and are rich in cutting state information. Vibrations emanating
from complex milling systems are quite intricate and require the use of
signal processing tools. Based on the classic Fourier analysis, the power
spectra of milling responses have been employed to explore the essence
of perplexing phenomena, including the bifurcation of milling responses
[14], influence of tool runout on chatter instability [15], emergence of
modal coupling [16], and mechanism of process damping [17].
Nonetheless, the pure frequency-domain description is not an
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appropriate choice considering the strongly non-stationary attributes of
the milling system, which limits the application of traditional spectrum
tools. According to the Floquet theory [14], infinite harmonics associ-
ated with stable milling exist in the frequency domain. Even more
inexplicable components arise when chatter occurs, making the spectral
distribution complicated. Such characterizations are mathematically
rigorous though, they do not correspond to actual physical processes;
that is, they are extrinsic features and do not reflect the nature of the
milling system. As a result, subtle changes in the cutting state will be
barely captured by the power spectrum because extrinsic features lag
intrinsic processes. A new cutting state cannot be detected until it is fully
developed, especially in practical engineering problems with in-
terferences and noises [18].

As an alternative to the frequency-domain analyses, time-domain
periodic sampling approaches such as the Poincaré mapping [19] have
been utilized to capture phase-space milling bifurcations. Such tech-
niques have extremely low computational costs and thus can be
employed for rapid dynamic analyses with the aid of a dedicated
numeric metric [20]. However, when the cutting is in the critical tran-
sition phase, the evolution of sampling points in the phase space cannot
be traced effectively and the corresponding metric threshold is difficult
to determine. In other words, chatter is difficult to detect in the pre-
mature phase.

A class of novel dynamic characterizations named intra-wave mod-
ulations were first utilized by Huang et al. (1996) [21] to analyze re-
sponses from classical Duffing, Rossler, and Lorenz systems, and the
method has recently gained much attention. Neither providing spurious
nor redundant information, intra-wave modulation analyses conduce to
the intuitive understanding of physical systems. Such features are
directly associated with underlying dynamic processes such as rubbing
impacts in rotor systems [22], crack-induced large deformations in beam
systems [23], inter-area oscillations in power systems [24], rogue waves
in ocean systems [25], and even repetitive movements in human bio-
logical systems [26]. However, intra-wave modulated signals exhibit a
fast oscillating time-varying frequency in the time-frequency domain
[23]. Additionally, in complex systems, responses from different origins
tend to be coupled. Considering these two factors, an effective tool that
integrates the functions of signal decomposition and time-frequency
analysis is needed. Although the classic Hilbert-Huang transform
(HHT) [21] meets the above needs, it lacks a rigorous mathematical
foundation and thus is extremely sensitive to perturbations of noise.
Narrow-band filter-bank-based variational mode decomposition (VMD)
[27] and synchrosqueezing transform (SST) [28] cannot work in such
cases because intra-wave modulation effects lead to wide-band spectra
[22].

Conventional simple descriptive models of milling responses can
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Fig. 1. Schematic of the thin-walled part milling system [32]. (a) Overall view. (b) Top view.

only characterize milling processes of a particular aspect and thus
impede a comprehensive understanding of milling dynamics. Combining
the time, frequency, and amplitude domain, the characterization of
milling processes based on intra-wave modulations can be expected to
provide new insights but has never been studied. Related to intra-wave
modulation phenomena, some questions are to be tackled:

@ What is the physics of intra-wave modulations in milling processes?

@ Do distinct modulation patterns exist under different cutting states?

@ Is there any internal relationship between the modulation patterns,
spectral distributions, and dynamical bifurcations?

@ What can we utilize intra-wave modulations of milling responses for?

In this work, to answer these questions, a generalized nonlinear non-
stationary signal model of milling responses is established first. Deter-
mination of model parameters is equivalent to the extraction of
embedded intra-wave modulation features, to accomplish which, a lack
of an effective signal processing tool has to be addressed. A novel
strategy based on the recently proposed iterative nonlinear chirp mode
decomposition (INCMD) [23] is developed. The idea of the INCMD is a
blend of those adopted in the VMD and HHT. Such a framework makes
the INCMD retain both mathematical rigor and algorithm adaptability.
An example of a Stokes wave [29] is presented to demonstrate that the
INCMD achieves a physically meaningful decomposition for wide-band
multicomponent responses [23].

Through dynamic simulations and experimental verification, it has
been observed that infinite harmonic processes do not exist in stable
cutting, but are induced by intra-wave modulated responses with the
tooth-passing frequency as the modulation frequency, and such phe-
nomena physically correspond to the stiffening effect [30] caused by
cutting impacts. The onset of chatter is intrinsically accompanied not by
the emergence of spurious non-harmonic processes, but by the switch of
the modulation frequency, and this frequency is exactly equal to the
chatter frequency derived from bifurcation calculations based on the
Floquet theory [14]. Distinct modulation patterns and spectral distri-
butions can be mathematically related by Bessel functions [31]. More-
over, the switch of the modulation pattern foretells the transition of the
cutting state, which emerges far earlier than visible chatter marks do.
The findings from this study provide additional insights into the rela-
tionship between milling responses and cutting stability, and further
demonstrate the application of intra-wave modulation analyses in con-
dition monitoring of milling processes.

2. Dynamics of milling

Chatter is extremely common in the milling of thin-walled parts [1].
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A descriptive model of such processes is provided in this section, fol-
lowed by a simplified stability analysis.

2.1. Dynamic model

A schematic of the milling system is shown in Fig. 1. The tool is
modeled as a two-degree-of-freedom spring-mass-damper system, and
the thin-walled workpiece is represented by a cantilevered plate with a
single main mode of vibration [32]. The motion of the workpiece is
considered in an inertial coordinate system with the point o as the origin
(see Fig. 1 (a)), while that of the tool is considered in a non-inertial
coordinate system attached to its own geometric center o, (see Fig. 1
(b)). The spindle rotation and feed motion indicate an up-milling
operation. The engagement between the tool and the workpiece is
governed by

My Xy + CuXy + kX, = Fx(t)-,
mtyy.y + Cry)}r + kry)’r = Fv(t)v (€9)]
My Yy, + Cuyyy + Ky = —F, )‘(t)7

where y;, X;, My, M, ky, ki, ¢y, and ¢, denote the displacement, mass,
stiffness, and damping coefficient of the tool in the feed and its normal
direction, respectively, while y,, myy, kyy, and c,, are those of the
workpiece in the normal direction. Moreover, Fy(t) and Fy(t) are the
cutting forces in two orthogonal directions, which must be determined
to explicitly express Eq. (1).

Considering an N-teeth milling tool, for the j-th tooth engaged as
shown in Fig. 1 (b), the cutting force can be projected in the radial and
tangential directions as

F, (1) = xa,hi(1),
{Fkn:mé%m@, @

where «; is the specific cutting energy, «, is a proportionality factor, a, is
the axial depth of cut (see Fig. 1 (a)), and h;(t) denotes the chip thickness
encountered by tooth j at time t. Consisting of a static part corresponding
to the tool feed and a dynamic part resulting from the regenerative effect
[33], the term h;(t) is expressed by

{h/-(t):hjm,(t)Jrh/-,dw( fsm(qoj t)) ( ( j(t)) +Ay(t)cos(q)j(t))),
Ax(t) =x() —x,(t—7), Ay(1) = (v (1) — yn()) (yz( —7)=yu(t—17)),
3

where f, is the feed per tooth, 7 is the tooth passing period such that 7 =
60/N in which £ denotes the spindle speed in rpm, and ¢;(t) represents
the angular position of the tooth j at time t as ¢;(t) = (270t /60) —
27(j —1)/N,j =1,2,---,N. Applying the projection transformation, the
cutting force in the feed direction and its normal direction can be ob-
tained as

{ £l = ~FulDsinlo(0) — il 0). @
Fy (1) = —Fj(t)cos(g;(1)) + Fy;(1)sin(¢;(1)).-
The cutting force acting on the entire tool can be determined as
N
= 8lo, )3
v

= &(e(0)3(hy (1) Fuy0).

=

(1) Fes (1),

.

(5)

The function g(-) in Eq. (5) is a tooth-cutting indicating function
given by

gwm){1%<%”<%, ©

0, else

where ¢, and ¢,, are the cutting start and exit angle, respectively, given
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Table 1
Simulation parameters of the milling system [6].

Mass (kg) Stiffness (N m™1) Damping (N s m™1)
Tool (x) 2.01x 1072 4.14x 10° 1.56
Tool (y) 1.99 x 1072 4.09 x 10° 1.60
Workpiece (y) 56.75 7.15 x 106 1.68 x 10°

by ¢, =0 and ¢,, = cos(1 —2a. /D) in a standard up-milling process.
Here, a, is the radial depth of cut (see Fig. 1 (b)) and D is the tool
diameter. In addition, &(-) is another indicating function that charac-
terizes the loss-of-contact effect [34] between the tool and the workpiece,
which can dominate the system dynamics in a partial immersion milling
process. The function §( -) is expressed as [34].

S 1, Rh(r) >0
6(hj(t)) - { 0, ]’lj(l) < 0 (7)
Substituting Egs. (2)—(7) into Eq. (1), the explicit governing equation
can be formulated, leading to a piecewise-linear, periodically time-
varying, constant-time-delay six-dimensional state-space system.

2.2. Stability and spectral distributions

Disregarding the nonlinearity in Eq. (1), the well-known semi-dis-
cretization method [9] is applied to achieve a simplified stability anal-
ysis. A milling process of a thin-walled aluminum plate that was already
studied numerically by Balachandran [6] is considered. The tool is
assumed to have only one tooth to exclude the run-out effect [15], and
the tool diameter is taken as 8 mm. The specific cutting energy «; =
644 MPa and proportionality factor , = 0.37. The immersion ratio (i.e.
a./D) is considered to be 0.05, and the feed rate is held constant at 0.01
mm/tooth. Other simulation parameters are listed in Table 1, and a
high-speed milling process with Q=1 x 10* ~ 2.6 x 10* rpm is
analyzed.

Fig. 2 demonstrates the stability of the milling system. Using the
semi-discretization, the instability type and the corresponding chatter
frequencies, in addition to the stability itself, can be determined by
analyzing the eigenvalues of the Floquet transition matrix [14]. As
demonstrated in Fig. 2 (a), the stable and chatter regions are bounded by
the solid black line. Red and green dots denote the Neimark-Sacker
bifurcation lobes that lead to the quasi-periodic chatter and flip bifur-
cation lobes that lead to the periodic-2 chatter, where the eigenvalues
penetrate the unit circle in the negative real and conjugate complex
forms, respectively [35]. Lens-like structures with periodic-2 and
quasi-periodic boundaries as the bottom and upper arcs illustrate a
transition from premature to fully developed chatter, which is a com-
mon scenario in low-immersion milling [35]. In this regard, periodic-2
motion acts as a presage of the final malfunction. Four different cut-
ting conditions with corresponding eigenvalues, denoted as A
(2=1x10°rpm, ay = 1 mm), B (2 =13 x 10% rpm, @, = 1.7 mm), C
(2 =17 x 108 rpm, a, = 2.5 mm), and D (2 = 25 x 10° rpm, a, = 1.05
mm) in Fig. 2 (a), respectively, indicate the typical stable,
pre-instability, chatter, and post-instability states.

In this study, particular attention is given to the distinct spectral
structures of the responses under different states. Denoting the chatter
frequency' with f,, the spectral components arising in the stable, quasi-
periodic, and periodic-2 responses, respectively, are given by (where
“TP” stands for “tooth passing”) [14]

1 Note that the chatter frequency herein follows the definition in the nu-
merical semi-discretization analysis [14]. It is not necessarily the peak fre-
quency in the spectrum when chatter occurs as specified in many papers where
the analytical stability analysis is used [48].
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Fig. 2. Stability of the milling system. (a) Stability lobe. (b) Chatter frequencies (1X and 0.5X stand for the tooth passing frequency and half of the tooth passing

frequency respectively).

fxtable' = {kaP} = {%} (HZ), k= 07 + 1) =+ 27 ]

kNQ 8
.ﬁ]uasi = {Wifc,quasi} (HZ)7 k= 05 + 17 :t27 ] ( )

KNG KNQ  NQ
ﬁif{zaiﬁﬂ}f{zaifﬁ}m@,k:Q:H,ilng

where the chatter frequency of the quasi-periodic type is an irrational
multiple (i.e., Af;p where A denotes an irrational number between 0 and
1), while that of the periodic-2 type is exactly half of the tooth-passing
frequency (i.e., 0.5f7p), as shown in Fig. 2 (b).

As Eq. (8) demonstrates, infinite harmonics exist in the spectrum
during stable cutting, and more complex components appear when
chatter occurs, leading to an intricate spectral distribution. Such features
are not physically meaningful [21]. An intrinsic interpretation of milling
responses can be achieved by applying the signal model of intra-wave
modulations, a class of inherent characteristics in dynamical systems
[21]. Such a model, along with an efficient approach to extract the
embedded intra-wave modulation features, will be introduced in Section
3.

3. Methodology
3.1. Signal model

The response signal from the milling system has strongly time-
varying attributes, and can be modeled as [23].

K K

s(t)="Y_a(t)="_ a(r)cos (2;: /0 ’ fk(r)dr—i-qﬁk), 9)

k=1 k=1

where a total of K so-called nonlinear chirp modes [36] constitute the
signal. The initial phase, instantaneous amplitude (IA), and instanta-
neous frequency (IF) of the k-th mode ci(t) are denoted by ¢, ax(t), and
fi(t), respectively. In terms of intra-wave modulations, model Eqn (9)
can be further specified as [23]

K

(10

where the IF of the k-th intra-wave modulated mode wy(t), a particular
family of nonlinear chirp modes [36], is given by

Ji(0) =foaser + €rvifrmx €08 (2nfryit + 60, 11
which demonstrates an IF oscillating sinusoidally around the center
value fygse k, With fry i as the frequency, emyifmrk as the range, and 6y as
the initial phase. Using Bessel functions [31], a series expansion of the
mode wy(t) can be expressed as

+o00

wi (1) = Z I (EFMJ«) {ak(f)COS (Zﬂ'(fbase.k + ”fFM.k)t +nb; + ¢k) }7

n=-—00

12

where J,( -) represents the Bessel function of the first kind and the n-th
order [31].

Infinitely many sidebands centered on fu.  (see Eq. (12)) justify the
mathematical consistency between the intra-wave modulated mode and
the spectral distribution discussed in Section 2.2. Further investigation is
necessary to determine a deeper relationship that links the modulation
patterns with cutting states. However, analysis of such signals is a tricky
problem. Multiple wide-band modes wy(t), k = 1,2,---,K in the signal
Eqn (10) cumulatively lead to an overlapped spectrum. Therefore,
narrow-band filter-bank-based methods such as VMD [27] cannot work
in such circumstances. The well-known HHT [21] technique, proficient
in addressing such situations though, is difficult to put into practice
because of its extremely low robustness. The recently proposed INCMD
approach [23] that combines the ideas of VMD and HHT is particularly
designed to analyze wide-band multicomponent signals. Based on
INCMD, the development of an effective strategy for capturing
intra-wave modulations is described in Sub-section 3.2.

3.2. Iterative nonlinear chirp mode decomposition (INCMD)-based
strategy for capturing intra-wave modulations

Similar to the VMD [27], the INCMD [23] addresses the problem of
signal mode reconstruction under the framework of variational opti-
mization. Both following the idea of demodulating each mode and mini-
migzing its bandwidth [27], distinctions between these two methods lie in
the demodulation strategy itself. Unlike the pure frequency-shift oper-
ation implemented in the VMD, the INCMD manages to find a frequency
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Input milling response data s to be analyzed

Initialize penalty coefficients p , 1 and the convergence threshold

Do the INCMD decomposition to obtain
intra-wave modulated modes {c,}, ,, withIFs{f,}, _ , andIAs{a,}, .

v

v

Output the INCMD time-

frequency spectrum to characterize

distribution features

Output the power spectra
of IFs to characterize
oscillating features

Fig. 3. Flow chart of the proposed INCMD-based strategy for capturing intra-wave modulations.

function fk(t) such that a pair of fully demodulated modes based on the
signal model Eqn (9) can be obtained as [23]

e (1) = ay(r)cos (27: /0 < (7) 7.?,((‘[))(11 + ¢k> 7

¢ (1) = —ag (1)sin (2;: /0 Z < (7) 7]7k(1)> dr + ¢k> .

Through the re-modulation of the quadrature constituents cil (t) and

13

CZZ (t) in Eq. (13), the reconstructed mode c,(t) can be expressed as

at)y=ch( cos(Zn/fA dT>+Ck sm(2n/fk ) 14

based on which the IA function ax(t) is given by

a()) =/ ()" + (¢ ()", (1s)
Ideal demodulation can be achieved when the estimated IF fk(t) is
exactly the true IF fi (t) itself, where cil (t) and ng (t) will have the most

compact spectrum [36]. In this regard, the optimal fi(t) can be deter-
mined by solving an optimization problem as [23]

min _ {[let" )], + ¢ )]}

<0, 6 0. 1)

5. 8o(1) = ¢ (£)cos (2;: /0 7 (T)dT) + ¢ (1)sin (27: A tﬂ(r)dr) + Cres

(16)

where the squared ¢, norm of the second-order derivative (i.e., ||(-)"]3)
acts as an operator to evaluate the mode bandwidth [23], and c;.s is the
residual after the mode ci(t) is removed from the current signal s.(t). To
extract modes in the descending order of energy, a greedy optimizer is
applied where the objective function to be minimized can be expressed
as [23]

17

2
W, (e B) =D+ D+l — (ol + i)
which is in the discrete-time form with p denoting a penalty coefficient,
D representing a second-order difference matrix, and ¢, ¢? being two
phase matrices given by

:diag[COS(ﬂk(to)), Cos(ﬂk(tl))>
O} = diag[sin(f, (1)), sin( (1)), -

» co8(Bi(tn-1)) s

. sin(By (1)) . a8

where S (t)

= 2ﬂf0fk

The constrained optimization problem (17) is addressed using the
efficient alternating direction method of multipliers (ADMM) [37].

Optimal solutions for ck s ck and fy can be updated iteratively as [23]

1
* T T
¢! :cfl)dwﬂ (qu‘zi) /dc:.,zo = ((fm) - EDTD) (@) sc.

2\ 2
~ = | (90) @
dw,, <c;i‘. czz. I'k) /BC:Z =0 (

. 2 -
£, =f + (1 + I;DTD> Af;,

Ay
Cx

-1
+})DTD> (@) (9

with

&\ S A
A <[) — —tan"! (C/; (I)> :zi Ck (’)Lf (’)2 Ck *(Z)Lkz (’)’ (20)
@ 0) (@0 + @ 0))
where I represents an identity matrix and x4 denotes another penalty
coefficient. Detailed derivations of Egs. (19) and (20) are available in

Ref. [23]. By substituting the latest available updates, the k-th mode can
be reconstructed as

X 21

To initiate these iterative updates, the peak frequency of the power
spectrum of the current signal s, is obtained as a constant initial IF fJ,
and the relative difference between the two latest updated modes is
considered as the convergence criterion expressed as

* 1% a4
¢ =¢, ¢

lec' = e[ / flec™ ;<. (22)

The termination of the decomposition process is controlled by the
result of the Ljung-Box Q-test [23] of the current signal s (i.e., the mode
number K is automatically determined [23]). Applying the INCMD
technique, all nonlinear modes {c; } with their IAs {a;} and IFs {f;} can
be obtained.

Considering intra-wave modulations in signal model Eqn (10), dis-
tribution characteristics including {ax}, {fpasex}, and {¢,} can be
analyzed using a two-dimensional INCMD spectrum as

Spec t;, f Z ) fkj (23)

wherei = 0,1,---,N; — 1, j=0,1,---,Ny — 1 denotes a N; x N time-
frequency mesh plane and § is the Dirac delta function. Oscillation
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Fig. 4. Stokes wave [29]. (a) Temporal waveform (the blue line denotes noisy version while the black line denotes noise-free version). (b) Power spectrum (noise-free
version only). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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Fig. 5. Time-frequency analysis of the noisy Stokes wave using different tools. (a) Morlet scalogram. (b) SST spectrum. (c) HHT spectrum. (d) INCMD spectrum (the
black line denotes the theoretical IF obtained in Eq. (26)). (e) Power spectrum of the IF extracted from the INCMD spectrum.

characteristics including {emx}, {frmx}, and {6} can be analyzed
through the Fourier analysis of extracted IFs {fi} (i.e., power spectra of
{fx}), according to Eq. (11). The entire strategy for capturing the intra-
wave modulations is illustrated in Fig. 3.

3.3. An example: Stokes wave

We provide an example to demonstrate the effectiveness of the above
strategy. A classic second-order Stokes wave, which is a perturbation
series approximation of nonlinear marine wave motion [29], is

°
S
o
=
0 100 200 300 400
2 L
(@\|
3
2 0
=
2t
0 100 200 300 400
(a) Time /s

expressed as

S(r) = %azk + a cos wt + %azk cos 2 wt, 24
where a denotes the wave amplitude, w is the angular frequency, and k is
the wavenumber. Taking a = 2, ® = 27/32 rad s7!, and k = 0.2, the
temporal waveform is generated as shown in Fig. 4 (a), where the white
Gaussian noise with a standard deviation of 0.5 is added to the original
signal (black line) to obtain the noisy version (blue line).

0 100 200 300 400

300 400

200
Time /s

0 100
(b)

Fig. 6. Signal decompositions of the noisy Stokes wave using different tools. (a) INCMD. (b) VMD. In Mode 1 the solid blue line denotes the extracted mode while the
broken black line denotes the noise-free Stokes wave. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of

this article.)
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The power spectrum of the wave signal (see Fig. 4 (b)) presents a
superposition of two harmonics, which agrees mathematically with Eq.
(24). However, such interpretations make no physical sense as the un-
derlying process is inseparable. Trigonometric identities can be applied
to Eq. (24) to express the Stokes wave in a time-varying form as [23]

S(r) = Ja*k + a(t)cos(wt + (1) ), (k1)
dksinwt/2
a+ a*k cos wt/2

%ak sin wt, (25)

1
a(t) = \/ﬂz + (a2k/2)” + @k cos wt ~ a + Eazk cos .

with ¢(f) = tan™!

From the phase function ¢(t) in Eq. (25), the theoretical IF can be
worked out as
(26)

1 ; 1 1
IF=—(o+¢(1) =~ — (a)—}—zakw cos wt).

2n 2n
The intra-wave modulated IF in Eq. (26) is directly associated with
the periodic harmonic distortion in the Stokes wave (i.e., the sharp crest
and flat trough, see Fig. 4 (a)), which is a possible mechanism for the
formation of rogue waves [38].
Different approaches are utilized to achieve the time-frequency
analysis of the Stokes wave, as shown in Fig. 5. Fourier-based wavelet

analysis (see Fig. 5 (a)) provides results consistent with that in the power
spectrum, and the wavelet-based SST technique (see Fig. 5 (b)) only
sharpens the original distribution. The presence of noise undermines the
effectiveness of the HHT method, making the spectrum unreadable (see
Fig. 5 (c)). The time-frequency distribution obtained by the INCMD
agrees well with the theoretical result (see Fig. 5 (d)), clearly capturing
embedded intra-wave modulations as given in Eq. (26). Further Fourier
analysis of the IF shows the 1X oscillating frequency (see Fig. 5 (e)), as
Eq. (26) indicates. The signal decomposition results of the noisy signal
by INCMD and VMD, respectively, are compared in Fig. 6. Owing to the
wide-band demodulation framework of INCMD, the original Stokes
wave is recovered with high accuracy (see Fig. 6 (a)), while the narrow-
band filter-bank-based VMD failed this task (see Fig. 6 (b)).

It has been demonstrated that a physically meaningful character-
ization of the Stokes wave can be achieved using the INCMD-based
strategy. With the aid of such an approach, intra-wave modulation
features extracted from milling responses similarly capture underlying
dynamic processes, which will be demonstrated in simulated and
experimental results in Sections 4 and 5.
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4. Intra-wave modulated responses in milling processes

In this section, simulated milling responses are investigated with the
assistance of the INCMD-based approach introduced in Section 3.2, with
p=1x105 u=1x 107> and e =1 x 1078 (see Fig. 3) set for the
INCMD if without a special note in following analyses. The system pa-
rameters remain the same as those used in Section 2.2, and the standard
dde23 routine in MATLAB® is employed. We consider four cases
mentioned in Section 2.2: stable cutting, pre-instability, chatter, and
post-instability, which are denoted as A, B, C, and D, respectively, in the
stability lobe (see Fig. 2 (a)).

The basic characterization of the studied tool vibrations is shown in
Fig. 7. The temporal waveforms (see Fig. 7 (a, b, ¢, d)) demonstrate a set
of responses with increasing amplitude and gradually more severe

shock. The periodic-1, periodic-2, quasi-periodic, and periodic-4 prop-
erties of tool motions are revealed in the phase portraits (see Fig. 7 (i, j,
k, 1)). Fig. 7 (e, f, g, h) shows the power spectra with the prominent
components marked, the structures of which are in agreement with the
theoretical predictions expressed in Eq. (8). Such frequency-domain
descriptions are, however, incomprehensible from a physical point of
view. Wavelet analysis is applied for a time-frequency description, as
shown in Fig. 8. Besides the information in the power spectra, the fre-
quency oscillations, though vaguely captured, can be observed in the
Morlet scalograms. Moreover, the oscillation pattern changes as the
cutting state transforms.

To ascertain the existence of all the above phenomena and elucidate
the relationship between them, the intra-wave modulation features of
four sets of responses are extracted and shown in Fig. 9. We discuss the
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results next.

4.1. Stable cutting

From the stable cutting response, four modes are extracted, the IFs of
which oscillate sinusoidally around 1X, 4X, 5X, and 6X, respectively (see
Fig. 9 (a)). Fourier analysis of the four IFs indicates a unified modulating
frequency at 1X. This phenomenon implies the synchronous fluctuation
of the transient vibrating frequency, which results from the stiffening
effect [30], a dynamic process led by periodic cutting force impacts. Note
that although the stiffening effect is discussed considering the
rotor-to-stator rubbing system in Ref. [30], this phenomenon is common
in intermittent milling as the workpiece and tool act as the stator and
rotor, respectively, to some degree. As stated in Ref. [30], “the interaction
between the rotor and stator equals to the addition of a transient support to
the rotor, the transient stiffness of the system increases”; the periodic
engagement between the tool and the workpiece causes periodic
time-varying stiffness, and thus leads to oscillating IFs. The stiffening
effect can also be observed in the cracked rotor [39] and cracked beam
[40] systems, another two well-known impact systems with
time-varying stiffness.

Such a physical interpretation is verified further in Fig. 10. The
extracted 1X temporal mode (see Fig. 10 (b)) undergoes a relaxation
oscillation [41] in which the tension is caused by the interaction between
the tool and the workpiece, and relaxation occurs during the free vi-
bration of the tool. The cutting force impact is accompanied by the peak
of the oscillating IF, as shown in Fig. 10 (a, ¢), demonstrating the stiff-
ening effect.

Substituting two essential parameters, the frequency center fq,. and
the modulation frequency fry, into the expanded mode in Eq. (12), the
spectral set can be obtained as

which constitute the frp (i.e., 1X) and its multiples, accounting for the

Jurape = {[(1 %) + (1) ], [(4x) +nm(lx)], [(5x)

iy =0, £1, £2,- 1,2, 3,4

F (1 x )], [(6%) +na(1x)]} (fre),

real spectral distribution (see Fig. 7 (e)).
4.2. Pre-instability: periodic-2 motion

Preceding the quasi-periodic chatter, periodic-2 motion is generally
not regarded as cutting instability because it still belongs to controllable
periodic vibrations [35]. However, it is unstable in the sense of
dynamical systems because it originates from the flip bifurcation of the
initial periodic-1 motion. Periodic-2 motion, therefore, acts as a
pre-instability.

Although the modulation pattern in Fig. 9 (b) resembles that in Fig. 9
(a), the modulation frequency has switched to 0.5X. The impact-induced
stiffening effect has developed into a non-synchronous yet periodic
process that occurs once in every two rotating periods. Applying a
similar substitution, the spectral set can be obtained as

S =12 %) +nm1(0.5x)], [(3x)+n2(0.5x)], [(4 %) +n3(0.5x)]} (frp),
n,=0, £1, £2,:m=1,2,3,
(28)

which leads to the rise of half-order harmonics between adjacent
integer-order harmonics, as shown in Fig. 7 (f).

4.3. Quasi-periodic chatter

Quasi-periodic chatter is a notorious instability phenomenon that
results from the Neimark-Sacker bifurcation of the periodic motion.
Essentially different from the two cases discussed above, the IFs here
exhibit a seemingly random oscillation (see Fig. 9 (c)). The power
spectrum of IFs, presenting a broad band though, shows a noticeable
peak at 0.37X, which is the corresponding theoretical chatter frequency
(see Fig. 2 (b)). Irrational multiples exist in the spectrum as

(27)
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o ~ J2) [31].

Jowasi = {12 %) +m (037 )], [(3 %) +m(0.37 x )]} (frr),

My =0, £1, £2,: m=1, 2. 29

Quasi-periodic engagements between the tool and workpiece bring
about the tangled side bands given in Eq. (29), as shown in Fig. 7 (g).

4.4. Post-instability: periodic-n motion

As chatter develops, the periodic response may emerge again
through the secondary flip bifurcation of quasi-periodic chatter [35], as
shown in Fig. 7 (d). The modulation frequency at 0.25X (see Fig. 9 (h))
leads to the spectral distribution of the periodic-4 motion as

S = (@) +n(0255)]} (r), n=0, +1, £2,-, 30)

which agrees with that shown in Fig. 7 (h). Such a mechanism can be
generalized to periodic-n motion, the power spectrum of which would
exhibit the 1/n-th order harmonics [42].
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4.5. Discussions

4.5.1. Energy concentration in chatter

In addition to the evolution of the modulation pattern discussed
above, the number of extracted modes decreases as chatter becomes
more severe (see Fig. 9 (a, b, ¢, d)). This phenomenon implies the con-
centration of energy, which has also been observed by Chen et al. [43]
who used the Rényi entropy, and Cao et al. [44] who used the standard
deviation to characterize the dispersion in the distribution of spectral
sequences of the milling responses. According to these studies, the en-
ergy of vibration responses will be absorbed into a certain resonance
band both in the frequency and time-frequency domains when chatter
occurs.

We calculated the normalized Rényi entropy values [43] (see
Appendix A for detailed formulas) of the power spectra (see Fig. 7 (e, f, g,
h)) and Morlet scalograms (see Fig. 8) of four sets of simulated re-
sponses, and the results are shown in Fig. 12 (a). The decreasing entropy
quantitatively describes the gathering energy in the frequency and
time-frequency domains, which is consistent with the conclusions
derived in Ref. [43]. As the greedy strategy is adopted in the INCMD
algorithm (i.e., the extracted mode in each recursion takes away as much
energy as possible within a certain bandwidth), the concentration of
energy within a small bandwidth (see Fig. 12 (b)) naturally reduces the
obtained modes, as mentioned in Section 3.2.

4.5.2. Physics of intra-wave modulation and consistency with spectral
distribution

Because the series model Eqn (12) can be truncated, we expand the
extracted mode wy(t) to the first three orders as

> 1 . . . .
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No04r ] &
<
g02f 1
2 0 —6—Power Spectra —»—Morlet Scalograms ’
. ) . : 0 >
(a) Stable Pre-instability Chatter Post-instability (b) Time
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Fig. 12. Energy concentration when chatter occurs. (a) Normalized Rényi entropy values of power spectra and Morlet scalograms of four sets of simulated responses.
(b) Energy concentration in time-frequency domain (where “BW” means “bandwidth").
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Ju(erx) {ar(£)cos (27 (foasex + nfri)t + 00 + @)}, (31)

n=0,£1,+2

Wk(t)

where the Bessel functions Jy(-),—q;, of the first kind are shown in
Fig. 11 (note that the relationship J_,(x) = (=1)"J,(x) exists [31]),
whose variation pattern is complex.

The truncated model Eqn (31) is essentially the superposition of a
finite number of harmonics. In Sections 4.1-4.4, the oscillation param-
eters including the center frequency f,45. and modulation frequency fry
have been substituted into Eq. (12) to obtain the spectral set. In fact, all
the descriptive constant parameters in Eq. (12) can be acquired after the
intra-wave modulation analysis, as demonstrated in Section 3.2 (see

a 6x

Fig. 3). By substituting the complete parameter set into Eq. (31), sam-
pling the Bessel functions at specific values, and combining like terms,
we can finally obtain four sets of harmonics corresponding to the vi-
bration responses in Fig. 7. The coefficients of these harmonics are
plotted in Fig. 13 with the true power spectra for comparison. Perfect
matching can be observed between the spectral peaks obtained by two
methods, which strongly demonstrates the mathematical rigor of the
characterization using intra-wave modulations and its consistency with
spectral distributions.

The classic Fourier transform expands the signal using a set of trig-
onometric bases that are linear and stationary. By contrast, nonlinear
and nonstationary bases are adaptively selected in intra-wave
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Fig. 15. Intra-wave modulation analyses of three sets of responses given in Fig. 14. (a, b, ¢) INCMD spectra. (d, e, f) Power spectra of IFs. (g) Resulting noise level

versus the tool runout level.
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modulation analyses. When processing the milling responses, the
resulting bases are a series of parsimonious harmonic-like single modes,
the IFs of which oscillate around the tooth-passing frequency, syn-
chronized with intermittent cutting force impacts as demonstrated in
Section 4.1. Some integer- and non-integer-order harmonics are
embedded in the modulation features but do not arise explicitly as they
do in the power spectra. Taking the case of stable cutting as an example,
all six harmonics from 1X to 6X can be observed in the power spectrum
(see Fig. 7 (e)), but only four intra-wave modulated modes centered on
1X, 4X, 5X, and 6X are extracted, as shown in Fig. 9 (a).

In other words, we can always obtain a sparse time-frequency rep-
resentation of milling responses using intra-wave modulation analyses.
Based on the discussion in Section 4.5.1, this comes as no surprise
because the extracted modes will be as few as possible with greedy al-
gorithms. From this viewpoint, these redundant harmonics do not exist
physically because dynamical systems in nature can always be charac-
terized with sparsity [45,46], as concluded by Huang when he employed
the Hilbert spectrum to interpret the harmonic distortion of nonlinear
Stokes waves [29] (note that this example is also given in Section 3.3).

4.5.3. Impact of tool runout on accuracy

In the simulations above, the tool teeth number is set as one to
exclude the runout effect. In practice, tool runout is inevitable and could
have an impact on identification accuracy when using the proposed
method. Considering the two-tooth tool (i.e., N = 2) with runout, be-
sides the tooth-passing components, the spindle rotating frequency (i.e.,
0.5X) and its multiples will arise in the power spectrum. As discussed in
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Section 4.1-4.4, when quasi-periodic or periodic-n (n > 2) chatter oc-
curs, the modulation frequency is less than 0.5X and thus “0.5X” can be
regarded as the new “1X” [15]. However, when periodic-2 chatter oc-
curs, the 0.5X, along with its multiples caused by the instability, will
coincide with the same frequencies caused by the runout. Such prob-
lematic situations are discussed in detail here.

For simplicity, the milling model in Section 2.1 is still used, and the
tool runout is described by a pair of imbalance factors because the chip
load will be distributed unevenly on two teeth when runout exists [47].
Eq. (4) is modified as

{ FXJ(t) = p]( - Fr.j(l)Sin((ﬂj(I)) - F,J(I)COS((p/-(I))), (32)
Fy(t) = /’j( - Fr.j(l)cos((pj(t)) + Fr.j(t)Sin((pj(l)))v

where all the elements other than the added weighting factors p; remain
unchanged. When the tool is perfectly symmetrical p; = p, = 1,
whereas p; # p, when runout exists. The tool runout level is defined
hereas (|p; —p3l)/(p1 +p2), €.8.,"p1 =0.9, p, =1.1" means the runout
at the 10% level.

Because the runout at low levels barely affects the stability boundary
[151, p; = p, = 1is set first, and semi-discretization is used to obtain the
stability lobe in Fig. 14 (a). The stable cutting and periodic-2 chatter,
marked with E (2 =18 x 10° rpm, @, = 4 mm) and F (Q =18 x 103
rpm, a, = 5 mm) in the lobe, respectively, are considered, and stable
cutting with runout at the 10% level is also simulated. The temporal
waveforms, phase portraits, and power spectra of the three sets of re-
sponses are shown in Fig. 14 (b, c, d), (e, f, g), and (h, i, j), respectively.
The variation in the cutting force acting on two teeth due to runout is
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Fig. 18. The first set of experimental data (2% immersion ratio). (a) Milling force signal with the workpiece surface finish. (b, ¢, d) Three segments of the force signal
with (e, f, g) their power spectra, corresponding to the S1, S2, and S3 windows marked in (a).

clearly shown in Fig. 14 (k), leading to a considerable amplitude at 0.5X
and 1.5X frequencies and the split of the Poincaré attractor. As a result,
periodic-2 chatter and stable cutting cannot be distinguished based on
the power spectra or phase portraits.

The runout effects also disturb the intra-wave modulation analyses,
but the resulting error could be negligible. As Fig. 15 (a, b, ¢) shows, the
INCMD spectra under stable cutting are almost the same with and
without runout. When runout exists, an extremely small spike can be
observed at 0.5X in the power spectrum of IFs, whose amplitude is only
2% of that at 1X, whereas for periodic-2 chatter, IFs oscillate purely at
0.5X, as concluded in Section 4.2.

Considering the spike at 0.5X as the unwanted noise and defining the
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noise level as the ratio of the spike amplitude to the 1X amplitude in the
PSD of IFs (the highest among multiple peaks is taken), we conduct tests
at different tool runout levels. The results are shown in Fig. 15 (g). An
acceptable threshold of the runout level at 24% is obtained, before
which the noise remains weak. Although only the two-tooth case is
discussed here, the coincidence between chatter frequencies and runout
frequencies appears in any case with an even number of tool teeth.
Therefore, the conclusions above can be generalized.

Among the intricate spectral components, critical indicative infor-
mation could be submerged and hidden. With the aid of intra-wave
modulation analyses, weak and fragile dynamic features embedded in
milling responses are extracted and amplified, which helps to detect
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referred to the Web version of this article.)

chatter in a premature phase. We validate this experimentally in Section
5.

5. Experimental verification

5.1. Setup

This section describes the dedicated experiments that were con-
ducted to verify the conclusions obtained in Section 4. Fig. 16 shows the
experimental setup that corresponds to the schematic in Fig. 1. Milling
tests were performed on a five-axis DMU 70V vertical machining center
with a spindle speed of up to 10,000 rpm. The cantilevered aluminum
workpiece was clamped in a vice with the free-end dimension of 100x
100 x 3 mm. One side of the free end was up-milled by a high-speed-
steel two-tooth tool with a diameter of 10 mm, where the second
tooth was ground off. Because the force signal is subjected to the least
interference while the fidelity of measured displacements and acceler-
ations are greatly affected by the placement of sensors [11], the milling
force is analyzed here. The Kistler® 9170A rotating dynamometer,
which has the cutting frequency of 2 kHz, was used to obtain milling
forces in the feed and its normal directions. All measured data were
collected using an acquisition device at a sampling frequency of 10 kHz.

Standard impact tests were conducted to measure the structural
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resonance, and the resulting frequency response functions (FRFs) are
shown in Fig. 17. In the cutting experiments, the spindle speed was fixed
at 8000 rpm and the feed was fixed at 0.0125 mm/tooth.? Tool cuts were
made at the free end of the workpiece in a 90 mm long track centered
with respect to the side of the plate. The axial cutting depth increased
uniformly from 1 mm to 10 mm. Two sets of tests with radial cutting
depths of 0.2 mm and 0.5 mm (i.e., immersion ratios as 2% and 5%,
respectively) were conducted.

5.2. Results

The first set of experimental data is shown in Fig. 18 (a). The force
signal in the feed direction (i.e. F,) and the surface finish of the work-
piece are presented. Visible chatter marks did not emerge until half of
the cutting length (i.e., 5.5 mm axial depth), dividing the machined area
into L, and II, accordingly. The cutting force, however, exhibits no
drastic changes in amplitude throughout, except for a conspicuous shock

2 Note that a small feed rate was set since the stiffness of the workpiece used
here is too low. The tool edge chipping emerges soon if a normal feed rate is set.
In practical engineering, the method proposed in this paper works under normal
feed rates larger than 0.1 mm/tooth.



G. Tu et al International Journal of Machine Tools and Manufacture 163 (2021) 103705
=
=
=
L 4
Z
~
2 i
1 .| | 1
-400 1< L Lansi T T it T T Pi€ e T >
0 10 20 30 40 50 60 70 80 90
(a) Cutting length / mm
:E 100 100 100
> O 0 0
~ 100 S11 -100 S21 -100 3
(b) 35 37 39 (¢) 82 8.4 8.6 (d) 457 459 461
_ Cutting length / mm Cutting length / mm Cutting length / mm
N 100
= R [ Y I A A A BN ¢ 77 SRR
2 Lo Lr Lol I N T N R T
=90 e A A B - P
3 {II{AIII Lol |l|| ‘|‘||111/2X|
20111 I ol aall Al 0 al [El P
0 400 800 1200 0 400 800 1200 0 400 800 1200
(e) Freq./Hz ] Freq./ Hz (2) Freq./ Hz
E 100 100
S 0 0
I
-100 S41 -100 S5
(h) 614 616 61.8 (i) 742 744 748
— Cutting length / mm R 45 Cutting length / mm
= = R U2 <
& 830 e
<) ST | 1J7 /in I
~ | | |
a 2 0 ASQXI | @AOLWBX
= 400 800 1200 0 400 800 1200
)] Freq./ Hz (k) Freq./Hz

Fig. 21. The second set of experimental data (5% immersion ratio). (a) Milling force signal and the workpiece surface finish. (b, ¢, d, h, i) Five segments of the force
signal with (e, f, g, j, k) their power spectra, corresponding to the S1, S2, S3, S4, and S5 windows marked in (a).

near the end of cutting. Using the INCMD spectrum, intra-wave modu-
lations of the response are monitored using a sliding window with a size
of 50 spindle periods. A switch in the modulation pattern is captured at a
cutting length of 25.6 mm, signifying two phases Ir and IIf in the
response. Two window segments S1 and S3 in phase I, II, and the
transition segment S2 across them are given in Fig. 18 (b, d, c),
respectively. Valuable information can hardly be extracted from their
power spectra because the tooth-passing components dominate while
the non-tooth-passing components are too weak to be distinguished
from noise.

Extracted intra-wave modulation features (see Fig. 19) demonstrate
three distinct processes. The incipient segment S1 consists of six modes
whose IFs oscillate at the 1X frequency (see Fig. 19 (a)), indicating stable
cutting as discussed in Sub-section 4.1. The above process lasts until the
periodicity of IFs ceases at the 25.6 mm cutting length. The cascade
power spectrum of IFs illustrates a transition from stable cutting to
quasi-periodic chatter, where irrational multiples of the 1X arise pro-
gressively (see Fig. 19 (e)).
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With a shock in the force signal at a cutting length of approximately
87 mm (see Fig. 18 (a)), the chatter becomes fully developed. As Fig. 19
(c) shows, pseudo-randomly fluctuating IFs embed chatter frequency
information at 48 Hz, which can be verified by weak sidebands in the
power spectrum of the response (see Fig. 18 (g)). Such a transformation
also manifests itself in the extracted 1X modes. While power spectra
hardly capture the differences (see Fig. 20 (c, d)), relaxation oscillation
(see Fig. 20 (a, b)) and intra-wave modulation patterns clearly show the
distinctions between the two modes. In addition, the number of
extracted modes decreases when chatter becomes more severe, as
concluded in Section 4. Note that the switch of the modulation pattern
emerges far earlier than visible chatter marks do (see Fig. 18 (a)). Such
switches, in this respect, are able to predict, rather than just indicate, the
coming of the new cutting state.

With the increase in the immersion ratio, the second set of experi-
mental data originates from a more complicated process, as shown in
Fig. 21 (a). Slight chatter marks appear first before the severe final ones,
separating the machined area into three parts, I, Iy, and III.
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Perplexing fluctuations in amplitude exist throughout the milling force
though, intra-wave modulation analysis is still applied to comprehend
the underlying process. Two switches of the modulation pattern are
captured, suggesting three phases I, IIs, and III; in the response. Char-
acteristic fractional harmonics in the power spectra of the developed
stages S3 and S5 in phase IIg, III; (see Fig. 21 (g, k)) reveal an ostensibly
periodic-2 and periodic-3 process, respectively, which is, however, to be
confirmed.

As Fig. 22 illustrates, the extraction of intra-wave modulation fea-
tures eliminates the need to interpret intricate power spectra. During the
first transition segment S2, the periodicity of oscillating IFs holds
throughout, but the period itself elongates at approximately 8.6 mm of
the cutting length (see Fig. 22 (b)). A transition from stable cutting to
periodic-2 chatter is clearly captured in the cascade power spectrum of
IFs, while such time-varying features are totally lost in the power
spectrum of the original response (see Fig. 21 (f)). A similar transition
from periodic-2 to periodic-3 chatter can be observed in segment S4 (see
Fig. 22 (d)), where the period of IFs elongates again at approximately
61.6 mm of the cutting length, accompanied by the rise of the 1/3-order
sub-harmonic in the power spectrum of IFs (see Fig. 22 (i)).

In contrast to the first set of experimental data, the periodicity of the
response is maintained throughout the second set, which can also be
observed in the extracted 1X modes (see Fig. 23). In such a case, the
relaxation oscillation forms of the three modes can be barely distin-
guished, whereas the intra-wave modulation patterns are of great help in
identifying the cutting states. Similarly, periodic-2 and periodic-3 mo-
tions precede the emergence of slight and severe chatter marks (see
Fig. 21 (a)), respectively, verifying the pre- and post-instability attri-
butes of these two types of responses, as discussed in Sub-sections 4.2
and 4.4. In addition, as the chatter intensifies, a decrease in the number
of extracted modes can be observed in Fig. 22.

Moreover, from the measured FRFs in Fig. 17 and the power spectra
under chatter in Figs. 18 and 21, it can be observed that chatter in the
two experiments originates from the tool resonance (700 Hz) and
workpiece resonance® (500 Hz), respectively. Note that such a priori
information is not needed in intra-wave modulation analyses because
the derived conclusions in Section 4 are general and not related to the
detailed system dynamics.

6. Conclusions

This study focuses on the intra-wave modulation phenomenon in
milling processes. A multicomponent signal in which each mode owns a
time-varying IF and IA is provided to model the milling responses.
Simple post-processing techniques are combined with INCMD, a
recently proposed approach for analyzing complex dynamic responses,
to extract the distribution and oscillation features of the model signal in
the time-frequency domain. With the aid of such a strategy, intra-wave
modulations in the noisy Stokes wave, which is subjected to periodic
harmonic distortion, are accurately extracted. Using this approach, the
intra-wave modulation patterns of milling responses and the corre-
sponding intrinsic physical processes under different cutting states are
investigated through dynamic simulations and experimental verifica-
tion. In addition, the internal relationship between the modulation
patterns, spectral distributions, and dynamical bifurcations is estab-
lished. Some important conclusions are summarized as follows:

3 Although the signal features embedded in workpiece vibrations also exist in
tool vibrations because of the coupling of the sub-systems [33], the tool-side
vibration will not be very intense when chatter originates from the workpiece
resonance generally. While in this study the weak chatter features can be
magnified using intra-wave modulation analyses, in practical engineering, it
would be better to monitor workpiece-side vibrations to detect chatter in time
when the stiffness of the workpiece is much smaller than that of the tool.
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(1) In stable cutting, infinite harmonic processes do not exist but are
induced by a limited number of intra-wave modulated modes.
The IFs of these modes are centered on the tooth-passing fre-
quency and its multiples (i.e., nX) and are modulated at exactly
the tooth-passing frequency (i.e., 1X). Such phenomena result
from the stiffening effect caused by intermittent cutting impacts,
also accounting for the relaxation oscillation of temporal modes.
Milling instability is accompanied only by the switch of the
modulation frequency while the distribution characteristics
remain unchanged (i.e., IFs of modes still oscillate around the nX
when chatter occurs), demonstrating the physical meaningless-
ness of the non-integer-order harmonics arising in the power
spectra. Spurious and intricate spectral components can be
mathematically interpreted by the series expansion of intra-wave
modulated responses using Bessel functions.

The modulation frequencies under different cutting states are
distinct. The incipient periodic-1 motion, the subsequent period-
2 motion caused by the flip bifurcation, the later quasi-periodic
motion originating from the Neimark-Sacker bifurcation, and
the final periodic-n motion led by the secondary flip bifurcation,
which indicate the stable cutting, pre-instability, chatter, and
post-instability, respectively, are characterized by the modula-
tion frequency at 1X, 1/2X, AX (A denotes an irrational number
between 0 and 1), and 1/nX. These frequencies are equal to the
chatter frequencies derived in bifurcation calculations based on
the Floquet theory.

(2)

(3)

Moreover, it has been observed in experiments that the switch of the
modulation pattern, which remains noticeable despite perturbation of
noise, emerges far earlier than visible chatter marks do. In this regard,
such switches can not only characterize but also predict the new cutting
state; that is, chatter can be detected in a premature phase, demon-
strating the superiority of such a cutting state indicator.

Complexity in industrial processes necessitates the introduction of
physically meaningful characterizations to understand intrinsic dy-
namics. Intra-wave modulation analyses help mitigate the complexity of
milling responses, and thus can be expected to further provide new in-
sights into the dynamics and control in addition to condition monitoring
of milling systems, which is our future work.
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Appendix A. Calculation of Rényi entropy

The calculation of the normalized Rényi entropy [43] index is detailed in this section.
Considering the spectral amplitude sequence of the milling response as {X(k), k = 1,2, ---,N}, the energy-based normalization can be applied to
obtain a new sequence as

X(k
Y (k) :#, (A1)
> X(k)
k=1
where Y(k) ranges between 0 and 1, and ) , Y(k) = 1.
Recall that the Rényi entropy parameterized by « is defined as
M a
TS
Hy(P)=——log,=——— a>0, a#1, (A.2)
l-—a M
> Pi
i=1

where {P(i), i=1,2, -+, M} is the complete probability set of a random event. Eqn (A.2) can be generalized to characterize the energy distribution of
milling responses in the frequency domain as (a is set as 3 following that in Ref. [43])

N
R S
H3(Y) :ﬁlog 27N7 = 7510g 2 E (Yk) . (A.3)
ZY/( k=1

k=1
The index H3(Y) is normalized further to confine the value to be within the interval [0, 1] and independent of the data length as

_H) _
log, N

RE(Y) - %log W30 (V@) (A.4)

When dealing with two-dimensional spectra such as the Morlet scalograms shown in Fig. 8 in the main text, the amplitude data distributed in the
time-frequency mesh plane are extracted and treated as a one-dimensional sequence. Then, the Rényi entropy can also be calculated using the formula
Eqn (A.4).

The index RE(Y) is a dimensionless indicator, the value of which will reach the maximum when the spectral data are distributed evenly, that is,
RE(Y) =1ifand only if Y(1) = Y(2) = -+ = Y(N) = 1/N. When the energy of the response gathers around a certain frequency band, that is, a few
values are extremely large while others are kept at a low level, the index RE(Y) will become small.
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