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parts via fixture with active support

Xingjian Dong1, Guowei Tu1, Lan Hu2, and Zhike Peng1,3

Abstract
In this study, we designed an integrated fixture system using eddy current sensors and piezoelectric actuators. With this

system, active supporting forces are exerted on thin-walled workpieces to adjust their stiffness in a real-time manner and

thus to suppress chatter in milling. When modeling this system, we used a mass–stiffness–damping element to characterize

the dynamic behavior of the actuator under high-speed responses, and we considered the electromechanical coupling

between the mechanical elements and the drive circuit of the actuator.We then proposed an optimal delayed state feedback

controller for the closed-loop system. The delayed state is obtained by introducing the time delay in milling dynamics into

the regular state feedback, and the optimal gain is worked out through the differential quadrature and gradient descent,

which is a much more computationally efficient method than the classic semi-discretization. Among all similar approaches,

our strategy leads to the largest stability region for milling of thin-walled parts and requires the least energy input, which are

proved by simulations and experiments.
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1. Introduction

Chatter has always been an issue in milling, especially when
it comes to thin-walled parts (Hao et al., 2022b), and one
common strategy for chatter suppression is active control
(Quintana and Ciurana, 2011; Zhu and Liu, 2020). Spindle
speed variation (SSV) is a classic active control technique.
When chatter occurs, the spindle speed continuously varies to
interfere with the formation of chatter marks. Multiple pat-
terns for such variation exist: sinusoidal (Yamato et al., 2018,
2020), triangular (Nam et al., 2020; Seguy et al., 2011),
square (Al-Regib et al., 2003), and even stochastic (Yilmaz
et al., 2002) and chaotic (Fansen et al., 2011). Chatter could
be exacerbated with a wrong pattern (Seguy et al., 2010), and
yet no general rules can be followed to choose the pattern
(including the waveform, amplitude, and frequency). Be-
sides, frequent speed changes cause damage to the spindle
system. Therefore, the SSV has not been adopted extensively.

Another main strategy for active chatter control is the
“smart spindle.” For example, Monnin et al. (2014) mounted
the accelerometer and piezoelectric stack on the front bearing
of the spindle and thus developed a closed-loop system.
Active radial control forces are exerted onto the spindle to
suppress chatter. Modification of the spindle makes this
strategy too costly and complicated to implement.

Unlike the above two solutions, auxiliary fixture/support
is a strategy where the workpiece, instead of the spindle, is

controlled. Sensors and actuators are mounted on the fixture
to enhance the stiffness and damping of the workpiece. This
method is well suited for milling of thin-walled parts, where
the flexible workpiece, rather than the spindle, is the main
source of vibration. However, most studies only focus on
quasi-static deformation control. Take the mirror milling
system (MMS), a typical type of auxiliary support, for
example. Sheng and Zhang (2018) used the MMS to
maintain a constant supporting force on the thin-walled part,
and Wang et al. (2019) adopted the MMS to achieve an
iterative deformation compensation. Dynamic chatter
control is not the focus of these studies. In this study, we
designed an integrated fixture using eddy current sensors
and piezoelectric actuators. Active dynamic supporting
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forces are applied to the thin-walled workpiece to eliminate
chatter. Extremely quick responses of eddy current sensors
and piezoelectric actuators make our device especially
suitable for highly dynamic chatter issues in engineering.

After we built the hardware, system modeling became
a major task. Since the models of milling processes are well
developed, the emphasis is on the actuator sub-system. Many
researchers consider the relationship between the drive
voltage and the output displacement/force of the actuator as
linear (Sallese et al., 2017; Zhang et al., 2019), but this is
incorrect when it comes to milling of thin-walled parts where
a high spindle speed is adopted and thus a high response rate
is set for the actuator (Georgiou and Mrad, 2005; Liu et al.,
2013a). In that case, dynamic behavior of the actuator cannot
be neglected. Therefore, in this study, we used the mass–
stiffness–damping model to capture the dynamic behavior of
the actuator and considered the coupling between the drive
circuits and mechanical elements. Such an accurate dynamic
model leads to better control performance.

Besides hardware building and system modeling, con-
troller design is another major task. Chatter control is often
viewed as vibration control for thin-walled parts under ran-
dom disturbances (Zhang and Sims, 2005), that is, the time
delay in milling dynamics is omitted, and thus, controllers
typically for linear time invariant systems (such as PID) have
been used for chatter suppression. However, the stability
region of the milling system can be expanded much more
efficiently if the time delay can be considered in controller
design (Liu et al., 2013b, 2014; Long et al., 2017). In this
study, we proposed an optimal delayed state feedback as the
controller, where the time delay in milling dynamics is in-
tentionally introduced into the state feedback and the optimal
gain is calculated through the differential quadrature (DQ)
method. Simulations and experiments demonstrate that our
strategy helps to maximize the stability region of the thin-
walled part milling system and requiresminimal energy input.

2. System design and modeling

2.1. Design of fixture with active support

Figure 1 gives the fixture we designed, which is based on
a regular vise. In this system, an eddy current sensor
(measuring range = ±1 mm) is used to measure the dis-
placement of the workpiece, four piezoelectric actuators
(drive voltage = 0–150 V, maximum output displacement =
152 μm, and maximum output force = 1200 N1) are used to
exert active supporting forces on the workpiece, and four
force sensors are used to measure the forces. A preload
device is used to ensure constant contact between the
workpiece and the actuator. Considering that the output
force of the piezoelectric element is unidirectional, we
installed the actuators on both sides. That is, when the
control voltage is positive, we apply it to the actuators on

one side, otherwise we apply it to the actuators on the other
side. More details about the fixture design are given in
Section S1 in Supplementary Material.

2.2. Modeling of spindle–workpiece–actuator
system

Next, we model the spindle–workpiece–actuator system in
Figure 1. As we alreadymodeled the same spindle–workpiece
system without active support in our previous research work
(Tu et al., 2021), the focus here is on the modeling of the
actuator. Many researchers use a purely linear function to
describe the relationship between the voltage applied to the
piezoelectric actuator and the output displacement/force, but
this only works if the response of the actuator is quasi-static.
When milling thin-walled parts, we normally set the spindle
speed very high and thus set the sampling frequency and the
response rate of the actuator high. In this case, the dynamic
behavior of the actuator cannot be neglected and the coupling
between the actuator, workpiece, and milling tool must be
considered. To this end, we establish an electromechanical
model of the actuator and workpiece as a whole.

Figure 2 shows the model we built. The actuator sub-
system consists of the drive circuit (including the capacitor c
and resistor r) and mechanical elements (including the mass
mp, stiffness kp, and damping cp). The contact stiffness be-
tween the workpiece and the actuator is not considered, that is,
the two are regarded as being rigidly connected in a parallel
manner. Note that the single actuator that can deliver bi-
directional forces in Figure 2 is equivalent to the pair of ac-
tuators that are symmetrically installed on both sides of the
workpiece in Figure 1. When the external voltage vin is ap-
plied, the piezoelectric element is driven by the voltage ve, and
the entire system is subject to the active control forceFpðtÞ and
the external load �FyðtÞ (i.e., the projection of the milling
force along the y axis (Tu et al., 2021)). The governing
equation of this workpiece–actuator system is formulated as�

mwy þ mp

�
€yw þ

�
cwy þ cp

�
_yw þ

�
kwy þ kp

�
yw

¼ �FyðtÞ � FpðtÞ: (1)

FpðtÞ in equation (1) is given by

FpðtÞ ¼ TemveðtÞ, (2)

where Tem is the electromechanical coupling coefficient and
veðtÞ is controlled by (Liu et al., 2013a)

vinðtÞ ¼ rc _veðtÞ þ veðtÞ: (3)

Equations (1)–(3) describe the mechanical part, elec-
tronic part, and coupling effect, respectively. We then
substitute these equations into the developed
spindle–workpiece model (Tu et al., 2021), and we obtain
an explicit model of the entire spindle–workpiece–actuator
system as
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which is a six-dimensional, piecewise linear, periodi-
cally time-varying system with a constant time delay. The
physical meanings and detailed expressions of all variables
in equation (4) can be found in Section S2 in Supplementary
Material. Next, we design the controller for this spindle–
workpiece–actuator system.

3. Controller design: Optimal delayed
state feedback

3.1. Delayed state feedback

Time delays have always been considered undesirable in
controllers, but for dynamical systems that naturally have

_~xðtÞ ¼ ~A ðtÞ~xðtÞ þ ~BðtÞ~xðt � τÞ þ CvinðtÞ, ~xðtÞ ¼
�
xtðtÞ, _xtðtÞ, ytðtÞ, _ytðtÞ, ywðtÞ, _ywðtÞ, veðtÞ, _veðtÞ

�T
,

~A ¼

0 1 0 0 0 0 0
�ktx þ aphxx

mtx

�ctx
mtx

aphxy
mtx

0
aphxz
mtx

0 0

0 0 0 1 0 0 0
aphyx
mty

0
�kty þ aphyy

mty

�cty
mty

aphyz
mty

0 0

0 0 0 0 0 1 0

aphzx
mtx

0
aphzy
mty

0
��kwy þ kp

�þ aphzz
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1
CCCCCCCCCCCCCCCCCCA

,

0
BBBBBBBBBBBBBBBBBB@
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0
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0
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mty

0
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mty

0
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0 0 0 0 0 0 0
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C ¼
�
0 0 0 0 0 0

1

rc

�T

, (4)

Figure 1. Designed fixture with active support: (a) picture and (b) sketch.
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inevitable time delays (such as the milling system discussed
here), intentionally introduced time delays in controllers
may have favorable effects in terms of the system stability
(Liu et al., 2013b, 2014; Long et al., 2017). Following such
an idea, we here design the delayed state feedback controller
for the system equation (4).

As Figure 3 shows, the red rectangle denotes the con-
trolled system and the blue rectangle denotes the state
feedback, in whichK1 is the feedback gain corresponding to
the current state and K2 is the one corresponding to the
delayed state. Considering that the reference input is zero
(i.e., the ideal displacement is zero) and thus there will be no
steady-state error in theory, we use the proportional-
derivative (PD) controller. In this case, the observation
matrix D is given by

D ¼
�
0 0 0 0 1 0 0
0 0 0 0 0 1 0

�
, (5)

and the system output is y ¼ ðyw _ywÞT . The corresponding
gain matrices are K1 ¼ ðp1 d1Þ and K2 ¼ ðp2 d2Þ. We then
can obtain the system input vinðtÞ as

vinðtÞ ¼ K1yþK2yðt � τÞ: (6)

Finally, the governing equation of the entire control loop
in Figure 3 can be derived as

_~xðtÞ ¼
�
~Aþ CK1D

�
~xðtÞ þ

�
~Bþ CK2D

�
~xðt � τÞ: (7)

When proper gain parameters are set, the time delay
~xðt � τÞ in equation (7) may be eliminated and the sta-
bility region for the milling process may be maximized.
Due to the time delay in the closed-loop system, it is
difficult to use empirical rules to tune the delayed-PD
controller (Dong et al., 2015). We here calculate the
optimal gain based on the stability analysis of the control
loop in Figure 3.

3.2. Optimal gain in the sense of stability

Improving the stability of the milling system is the fun-
damental strategy to suppress chatter, and therefore, we
define the optimal gain in the sense of stability. We first
rewrite equation (7) as

Figure 3. Block diagram of the closed-loop system, which consists of the controlled system (equation (4)) and the corresponding

delayed state feedback controller.

Figure 2. The electromechanical model of the workpiece–actuator system.
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_~x ðtÞ ¼ ~~AðtÞ~xðtÞ þ ~~BðtÞ~xðt � τÞ, ~~A ¼ ~Aþ CK1D,
~~B ¼ ~Bþ CK2D,

(8)

where ~~A and ~~B are the new system matrices. Under the
framework of the well-known semi-discretization method
(Insperger and Stépán, 2004), the stability analysis of the
system equation (8) boils down to the eigenvalue analysis of
the state-transition matrixΦ. The matrixΦ can be regarded
as a function of the gains K1 and K2, and the criterion for
a stable system is

ρðΦðK1,K2ÞÞ < 1, (9)

where ρð�Þ is an operator for the spectral radius of a matrix.
When ρðΦðK1,K2ÞÞ reaches its minimum, the milling
response will decay fastest. Therefore, the optimal gain can
be defined as

Kopt ¼ argmin
K1,K22V

fρðΦðK1,K2ÞÞg, (10)

where V is the region for optimal gain search.
We can of course solve the optimization problem

equation (10) using the semi-discretization method.
Once the gain parameters ðK1,K2Þ have been specified,
we can obtain the corresponding ρðΦÞ by the semi-
discretization (Insperger and Stépán, 2004); and after
iterating this process across the entire search region V,
we can easily find the minimum of ρðΦÞ and the cor-
responding optimal gain. However, such a strategy is too
computationally costly. One way to speed up this
searching process is to obtain the partial derivatives of
ρðΦÞ with respect to ðK1,K2Þ and then to use a generic
optimizer such as the gradient descent. The partial de-
rivatives cannot be obtained by a purely numerical
method such as the semi-discretization. Here, we use
a technique called the differential quadrature (DQ)
(Bellman and Casti, 1971; Ding et al., 2013) to work out
the analytical form of the matrix Φ with respect to the
variables ðK1,K2Þ, and thus to obtain the analytical form
of the partial derivatives of ρðΦÞ with respect to
ðK1,K2Þ.

Similar to the finite difference or finite element, the DQ is
a method to numerically solve ordinary/partial differential
equations. In the DQ, the derivative/partial derivative is ap-
proximated by a weighted sum of values of the integrand at
specific grid points (Bellman and Casti, 1971). Before applying
the DQ to equation (8), in order to simplify the computation, we
neglect the nonlinearity in equation (8) (i.e., we omit the “loss-
of-contact” effect in milling of thin-walled parts (Tu et al.,
2021)), and we convert the periodically time-varying elements
hðtÞ in the systemmatrices ~~A and ~~B in equation (8) to constants
using the zero-order approximation (Gradišek et al., 2005) as

h ¼ 1

τ

Z τ

0

hðtÞdt: (11)

Then, we obtain the approximated closed-loop system as

_~xðtÞ ¼ A~xðtÞ þ B~xðt � τÞ: (12)

Under the framework of the DQ, the state-transition
matrix of the system equation (12) is given by

Φ ¼ Ψ�1Γ,

Ψ ¼ �
 
0N×N

In×nÄA

!
þ
0
@ IN×N j0N×Nn

1

τ
DÄIN×N

1
A,

Γ ¼

0
BBBBBBBBBB@

0N×N 0N×N / 0N×N IN×N

0N×N B

0N×N B

« 1

0N×N B

1
CCCCCCCCCCA
,

(13)

where N is the dimension of the closed-loop system
equation (12), n is the number of grid points, and D is
a weight matrix. The derivation of equation (13) and the
determination of the matrix D are detailed in Section S3 in
Supplementary Material.

In MATLAB programming, we first input the system
matrices A and B and define the gain parameters ðK1,K2Þ as
symbolic variables. Then, we construct the matrices Ψ and Γ
according to equation (13). We finally obtain the Ψ�1 using
the MATLAB function inv and thus obtain the symbolic state-
transition matrix ΦðK1,K2Þ. Following this, we work out all
the eigenvalues of the matrix Φ (which are denoted by λðΦÞ)
using the function eig, and we find out the one with the largest
modulus (which is denoted by λρ) after substituting the current
gain parameters. With the eigenvalue λρ, we calculate the
partial derivative of the spectral radius of the state-transition
matrix ρðΦÞ with respect to the gain parameter z (z could be
any of the parameters p1, d1, p2, d2) as

∂ρðΦÞ
∂z

¼ ∂
��λρ��
∂z

¼ λρ
∂λρ
∂z þ λρ

∂λρ
∂z

2
��λρ�� , (14)

where λρ is the conjugate of λρ (see Section S4 in
SupplementaryMaterial for the derivation of equation (14)).

When using the DQ, we compute the state-transition
matrix Φ only once before the searching process, and
then we calculate the gradient ∂ρðΦÞ=∂z at the current
gain each time we update the gain. Due to its high
computational efficiency, the gradient descent can lead
to a much faster searching than that when the semi-
discretization is used. We next demonstrate this point
using a numerical case.
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3.3. A numerical case
We consider a milling system that was numerically studied by
Davies and Balachandran (2000). The number of tool teeth is
set as 1, and the diameter of the tool is 8 mm; the specific
cutting energy κt is 644 MPa, and the proportional factor κn is
0.37; the tool immersion ratio (i.e., ae=D) is set as 0.05, and the
feed rate is 0.01 mm/tooth. The structural parameters are given
in Table 1. We set the spindle speed asV ¼ 17 × 103 rpm and
the axial depth of cut as ap ¼ 2:5 mm, in which case the
milling system is going through quasi-periodic chatter
(Tu et al., 2021). As for the actuator sub-system, we set the
parameters as mp ¼ 9 × 10�2 kg, kp ¼ 8 × 106 N=m,
cp ¼ 50:89N=m s�1, c ¼ 2:4 × 10�6 F, r ¼ 470 kV, and
Tem ¼ 3:67 N=V (these parameters are obtained by system
identification, which will be detailed in Section 5.2).

We here adopt the regular PD controller, that is, wemake p1
and d1 the variables to be optimized while p2 ¼ d2 ¼ 0. The
search region is set as p1 2 ½�5, � 40� and d1 2 ½�10; 10�.
We first iterate the semi-discretization across the entire region
so that we obtain the three-dimensional distribution of the
spectral radius ρðΦÞ and find the optimal gain (which cor-
responds to the minimum of ρðΦÞ), as shown in Figure 4(a).
Then we use the DQwith gradient descent to do the searching.
For the DQ, we set the number of grid points n as 40; and for
the gradient descent, we set the initial value and the step size as
½p1, d1� ¼ ½�5, 0� and 0.5, respectively. Figure 4(b) shows the
process of the gradient descent.

The optimal gain obtained by the semi-discretization is
ðp1, d1Þopt ¼ ð�21:63, � 1:40Þ (the blue “Δ” in Figure 4(b)),

corresponding to the minρðΦÞ ¼ 0:76; while the optimal
gain obtained by the DQ with gradient descent is
ðp1, d1Þopt ¼ ð�21:62, � 1:25Þ (the red “+” in Figure 4(b)),
corresponding to the minρðΦÞ ¼ 0:79. The two methods
lead to almost the same results, but the computational costs
of these two strategies are hugely different. The searching
by the semi-discretization takes 310 s; while through the
DQ with gradient descent, the updated value converges to
the minimum after only three iterations, taking 1.02 s. Our
computationally efficient strategy is well suited for milling
of thin-walled parts during which the system parameters
may vary. We next apply the optimal delayed state feedback
controller to the spindle–workpiece–actuator system, with
the aim to demonstrate the effectiveness of the active
support and the superiority of the controller we designed.

4. Control system simulation

As discussed in Section 3.2, the essence of chatter
control is the expansion of the stability region. We here
use control system simulation to show how the active
support under delayed state feedback influences the
stability region of the milling system for thin-walled
parts. The parameters for simulation are the same as
those used in Section 3.3. The stability lobe diagrams
with different controllers used are given in Figure 5.
Compared with the regular state feedback, the delayed
state feedback helps to expand the stability region much
more efficiently. When the delayed-PD controller is

Table 1. Structural parameters of the milling system for simulation (Davies and Balachandran, 2000).

Mass (kg) Stiffness (N m�1) Damping (N s m�1)

Tool (x) 2:01 × 10�2 4:14 × 105 1:56

Tool (y) 1:99 × 10�2 4:09 × 105 1:60

Workpiece (y) 56:75 7:15 × 106 1:68 × 103

Figure 4. Searching for the optimal gain: (a) three-dimensional distribution of the spectral radius ρðΦÞ obtained by semi-discretization

and (b) gradient descent with the aid of DQ.
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adopted, the stability region is maximized, the area of
which is about three times that of the uncontrolled
milling system. In this case, the chatter instability can be
well mitigated. We next verify the conclusion using
experiments.

5. Experimental verification

5.1. Set-up

The overall experimental set-up and the control logic
flow are shown in Figure 6. We use an NI USB-6259
multifunctional I/O device to achieve the acquisition of
the vibration signal and the output of the control signal.
The calculation of the control signal is carried out by
a LabVIEW program. All milling tests are conducted
based on a DMU 70V five-axis vertical milling machine
with the maximum spindle speed equal to 10,000 rpm.
The aluminum thin-walled workpiece is clamped at one
end, and the size of the free end is 100 × 100 × 3 mm. The
high-speed-steel milling tool is a single-tooth cutter
with the diameter equal to 10 mm.

5.2. System identification

We next identify the milling system to obtain all the system
parameters in equation (4). As Figure 7 shows, we first
conducted modal tests on the milling tool, workpiece, and
piezoelectric actuator to acquire the frequency responses
(FRs) of these structures. We then obtained the structural
parameters by fitting the experimental FRs, as given in
Table 2. The electronic parameters of the actuator system
are given in the product manual as c ¼ 2:4 × 10�6 F and
r ¼ 470 V. Next, we carried out the static loading test on
the actuator (Georgiou and Mrad, 2005) to identify the
electromechanical coupling coefficient as Tem ¼ 3:67 N=V.
Last, using the algorithm proposed by Gradišek et al.
(2004), we conducted some milling tests and identified
the cutting force coefficients as κt ¼ 767:85 MPa and
κn ¼ 0:28. With these parameters, the optimal gain can be
calculated based on the strategy in Section 3.2.

5.3. Milling tests

We conducted milling tests to prove the effectiveness of the
active support and the superiority of the controller we

Figure 6. Experimental set-up: (a) overall view and (b) control logic flow.

Figure 5. Stability lobe diagrams with different controllers used (all controller gains are obtained through the strategy in Section

3.2).
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designed. The sampling frequency was set as 10 kHz. Five
controlled experiments (#1 ∼ #5) were carried out: #1—
without support (see Figure 8(a)), #2—support with control
off (i.e., passive support, see Figure 8(b)), #3—support with
delayed-PD feedback and optimal gain, #4—support with
regular PD feedback and optimal gain, and #5—support
with delayed-PD feedback and empirical gain. We used an
online chatter prediction system that is based on our pre-
vious research work (Dong et al., 2021; Huangfu et al.,
2022; Tu et al., 2020, 2021) (see Section S5 in
Supplementary Material for details), and therefore, in the
latter three tests (#3, #4, and #5), the controller automatically

turned on after the chatter alarm went off (Hao et al., 2022a;
Liu et al., 2018; Zhao et al., 2021).

The same machining parameters were adopted in the
above five tests: the spindle speed is 8000 rpm, and the feed
rate is 0.0125 mm/tooth; the tool path is symmetrical about
the midpoint of the free end of the workpiece with the length
equal to 90 mm; the axial depth of cut increases from 1 mm
to 10 mm at a constant rate, and the radial depth of cut
remains constantly at 0.2 mm. Figure 9 gives the five sets of
results, which include the surfaces of the workpiece, the
collected displacement signals of the workpiece with
a chatter indicator named the H(s) (see Section S5 in

Figure 7. Modal tests and frequency responses of each component in the actively controlled milling system: (a) milling tool, (b) thin-

walled workpiece, and (c) piezoelectric actuator.

Table 2. Structural parameters obtained by modal tests.

Mass (kg) Stiffness (Nm�1) Damping (Nsm�1)

Tool (x) 6:7 × 10�2 1:30 × 106 13:15

Tool (y) 6:5 × 10�2 1:29 × 106 13:92

Workpiece (y) 2:1 × 10�1 3:60 × 105 12:95

Actuator 9:0 × 10�2 8:00 × 106 50:89

Figure 8. Fixture with and without support: (a) without support and (b) with support.
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Supplementary Material for how we calculate the H(s)), the
Fourier spectra of the displacement signal segments, and the
control voltages of the actuator.

Without support, the milling system went through severe
chatter instability. As the axial depth of cut increased, the

surface of the workpiece was damaged (see Figure 9(a) #1),
the amplitude of vibration diverged (see Figure 9(b) #1),
and the chatter frequency dominated the Fourier spectrum
(see Figure 9(c) S1). Chatter was mitigated after the passive
support was applied, but the similar instability-related

Table 3. Standard deviation of the displacement signals.

Test number

#1 (without

support)

#2 (with support but

control off)

#3 (delayed-PD and

optimal gain)

#4 (PD and optimal

gain)

#5 (delayed-PD and

empirical gain)

Standard

deviation

0.1978 0.1261 0.0133 0.0344 0.0654

Figure 9. Five sets of results. (a) Surfaces of the workpiece. (b) Displacement responses of the workpiece with the chatter indicator (in

tests #3, #4, and #5, the controllers were automatically turned on after the chatter alarm was triggered). (c) Fourier spectra of fives signal

segments (S1 ∼ S5, as denoted in (b)). (d) Control voltages of the actuator in tests #3, #4, and #5.
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phenomena were still observed after a certain depth of cut
was reached (see Figure 9(a) and (b) #2 and Figure 9(c) S2).

The optimal delayed-PD controller helped to eliminate
chatter. As Figure 9(a) and (b) #3 shows, the displace-
ment of the workpiece was within a small range, and the
surface showed no chatter marks. In this case, the tooth-
passing frequency 1X instead of the chatter frequency
dominated the Fourier spectrum (see Figure 9(c) S3). For
comparison, we replaced the delayed-PD controller and
the optimal gain with the regular PD controller and the
empirical gain, respectively, in tests #3 and #4. This
decreased the performance of the active support: chatter
marks re-appeared (see Figure 9(a) #4 and #5), the
amplitude increased (Figure 9(b) #4 and #5), and chatter
components arose in the frequency domain (see
Figure 9(c) S4 and S5). On top of that, the replacement
intensified the energy consumption of the actuators, as
Figure 9(c) shows. The results demonstrate the superi-
ority of the active support under optimal delayed state
feedback and the necessity of introducing such a strategy.

We also made a quantitative comparison in Table 3. We
calculated the standard deviation (SD) of the displacement
signals. With the controller turned off, the SD is large with
or without support, which indicates severe chatter vi-
brations. While using active support combined with the
optimal delayed-PD controller, we achieved stable milling
with a much smaller SD. With the delayed-PD controller
replaced by the regular PD controller or the optimal gain
replaced by the empirical gain, the SD bounced back, which
means the re-emergence of chatter. Please note that the
chatter indexH(s) shown in Figure 9(b) is also a quantitative
indicator. The H(s) is derived from the time-frequency
information of milling response signals (see Section S5
in Supplementary Material for details), and a higher H(s)
value means more severe chatter. All these quantitative
results have validated the qualitative analysis above.

6. Conclusions

In this study, we developed an active support system for
thin-walled workpieces by integrating eddy current sensors
and piezoelectric actuators into a fixture. With this system,
the stiffness of the workpiece is adjusted in a real-time
manner to suppress chatter. Some noteworthy conclusions
are summarized as follows:

(1) Under high-speed responses, the dynamic behavior of
the piezoelectric actuator should be modeled for better
chatter suppression performance. The mechanical part
of the actuator can be described by a mass–stiffness–
damping element, and the electromechanical coupling
between the mechanical part and the drive circuit (i.e.,
the electronic part) should be considered.

(2) For milling systems where the time delay is naturally
embedded, the delayed state can be intentionally

introduced into the regular state feedback to maximize
the stability region and also minimize the energy input.
To avoid empirical gain tuning, the differential quad-
rature combined with gradient descent can be utilized to
work out the optimal gain in the sense of stability. This
technique is much more computationally efficient than
the classic semi-discretization.

In our experiments, the position of active support barely
poses any influences on the performance of chatter sup-
pression as the size of the thin-walled plate is quite small,
but this is not true for relatively large thin-walled parts. In
that case, we can build distributed support with each “small
region” supported by a specific number of actuators. With
such a strategy, the method we proposed can still be used.
Our future work will be devoted to this.
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measured with zero load and maximum voltage applied, while
the maximum output force is measured with zero displacement
and maximum voltage applied.
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