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utilized in many practical nonlinear systems including mechanical, power, ocean and even
human biological systems. However, the empirical nature of the HHT makes the results
physically uninterpretable and sensitive to perturbations of noise. Variational nonlinear
chirp mode decomposition (VNCMD) is a recently proposed tool for analyzing wideband
Intra-wave modulation multicomponent signals, including intra-wave modulated responses. On the other hand,
Hilbert-Huang transform the VNCMD has strict requirements on the priori information of the signal. In this paper,
Nonlinear chirp mode decomposition we combine the framework of the VNCMD with that of the HHT, by replacing the joint-
Nonlinear system identification optimization scheme of the VNCMD with a recursive procedure adopted in the HHT. In
this way, the new method becomes more adaptive without losing the rigorous mathe-
matical foundation. This construction leads to a descendant of VNCMD, named the itera-
tive nonlinear chirp mode decomposition (INCMD). Through dynamic simulations and
applications to real data, it is demonstrated that the INCMD considerably outperforms
state-of-the-art techniques of the same class. Using the INCMD, intra-wave modulations
can be captured with high accuracy and strong noise-robustness. Extracted modulation
features by the INCMD greatly help to detect and identify nonlinear systems.

© 2020 Elsevier Ltd. All rights reserved.

Keywords:

1. Introduction

Understanding the intrinsic physical processes underlying nonlinear phenomena has always been a key issue in nonlinear
dynamics. Solutions of the corresponding inverse problems are generally required to gain new insights into a certain
nonlinear effect. In this sense, signal processing plays an important role since it can be utilized in system identification, a well-
known inverse problem. Dualities between forward and inverse problems exist [1]: The classic Poincaré’s perturbation
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Nomenclature

ADMM Alternating direction method of multipliers
AM Amplitude modulation

DOF Single-degree-of-freedom

EMD Empirical mode decomposition

EWT Empirical wavelet transform

FM Frequency modulation

F-SST  Short-time Fourier transform-based synchrosqueezing transform
HB Harmonic balance

HHT Hilbert-Huang transform

1A Instantaneous amplitude

ICCD Intrinsic chirp component decomposition

IF Instantaneous frequency

IMF Intrinsic mode function

INCMD Iterative nonlinear chirp mode decomposition
KBM Krylov-Bogoliubov-Mitropolsky

M-DOF Multi-degree-of-freedom

NCM Nonlinear chirp mode

PSD Power spectral density

RMSE  Root mean square error

S-DOF  Single-degree-of-freedom

SNR Signal-to-noise ratio

SST Synchrosqueezing transform
STFT Short-time Fourier transform
TFA Time-frequency analysis

TFD Time-frequency distribution

VMD Variational mode decomposition

VNCMD Variational nonlinear chirp mode decomposition
W-SST Wavelet transform-based synchrosqueezing transform
WT Wavelet transform

method adopts a formal power series to quantify the small deviation from the solvable linear to the unsolvable nonlinear
system, and this deviation relates to the harmonic distortion in temporal waves, one of the clearest nonlinearity indicators
[2]; Fourier analysis further can reveal super- and/or sub-harmonics, another well-known nonlinearity indicator already
utilized in many practical engineering issues [3], and the basic idea of this tool coincides with that of the harmonic balance
(HB), a frequency-domain based-method to calculate the steady-state of nonlinear systems [4]. Two types of dualities above
capture the basic characteristics of nonlinear responses [1].

Combining the time and the frequency domain description, the time-frequency analysis (TFA) techniques are used to
observe the response in a joint domain [5]. In this vein, some time-varying features such as skeleton curves [6], instantaneous
modal parameters [7] and resonance transitions [8] can be tracked using some common TFA methods like the short-time
Fourier transform (STFT) and the wavelet transform (WT) [9]. What's worth noting is that nonlinear features mentioned
above are slow dynamics deriving a system with slowly-varying amplitudes and phases [10], which can also be obtained by
the method of averaging, the Krylov-Bogoliubov-Mitropolsky (KBM) approach or the multiple-scale analysis [4] analytically.
Opposed to this, a class of fast dynamics termed the intra-wave modulations, exhibiting a fast oscillating instantaneous
frequency (IF) and/or amplitude (IA) in the time-frequency-energy domain, were first observed by Huang et al. (1996) [11]
when he employed the Hilbert-Huang transform (HHT) method to analyze classic nonlinear systems including the Duffing,
Lorenz, and Roéssler systems. As Huang pointed out [11], instead of interpreting the dispersive propagation externally shown
in a wave train, which should be regarded as the inter-wave modulation, the intra-wave modulation captures an inherent
nonlinearity connected to harmonic distortions. Intra-wave modulations ought to make physical sense and provide more
detailed information than modern topological tools can do. Such characteristics, however, are lost in Fourier analysis and
vaguely depicted by wavelet analysis [11].

No rigorous analysis directly derives such fast dynamics though, it has been demonstrated that the intra-wave modulation
originates from classic perturbations under specific approximations [12], and Bessel functions describe the quantitative
relationship between modulation features and the harmonic distortion [1]. Following Huang's study, researchers have
noticed similar phenomena in many practical nonlinear systems such as rotor systems with rubbing [13] or crack fault [14],
non-stationary power systems [15], ocean systems [16], and even human biological systems [17,18]: the intra-wave
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modulation comes into being along with the emergence of nonlinearity, making itself a novel tool for nonlinearity detections
and identifications [13].

However, the empirical nature of the HHT method prohibits new insights into this nonlinear phenomenon. The HHT
adopts a synthetic framework combining the adaptive signal decomposition [19] and the high-resolution time-frequency
characterization, for which the empirical mode decomposition (EMD) and Hilbert transform are used respectively. The ad hoc
elements contained in the EMD makes it hard to analyze mathematically. Thus, the extracted so-called intrinsic mode
functions (IMFs) and subsequent TFA results tend to be physically meaningless especially when perturbated by noise.
Nonetheless, this framework derives many HHT-class methods but with a solid analytical foundation, among which the
synchrosqueezing transform (SST) by Daubechies et al. [20] is a well-known attempt. The SST can be regarded as a reassigned
STFT/WT that sharpens approximately harmonic modes in the spectrogram/scalogram, but this scheme fails to deal with
intra-wave modulated signals with the fast oscillating, not the slowly-varying amplitude and frequency. The latter is exactly
the prerequisite of the SST tool [21]. Some other work has been done to obtain the modes only, without TFA for them such as
the empirical wavelet transform (EWT) [22] and variational mode decomposition (VMD) [23]. They are all restricted to
narrow-band modes decomposition therefore not applicable to intra-wave modulated signals having a wideband spectrum.
Recently, a VMD-based method termed the variational nonlinear chirp mode decomposition (VNCMD) [24] is specifically
designed for wideband multi-component signal analysis. VNCMD follows the basic idea of VMD but uses a data-driven
demodulation operator to demodulate each mode before estimating its bandwidth and thus can extract modulation fea-
tures with high accuracy [13]. But the initialization of VNCMD requires a given mode number and initial IF guesses for each
mode, prohibiting the use of it in practical applications.

In this paper, we combine the philosophy of the HHT with that of the VNCMD to eliminate the drawbacks of two original
methods. This construction leads to a descendant of VNCMD, called the iterative nonlinear chirp mode decomposition
(INCMD). INCMD uses a modified VNCMD optimizer to extract the signal modes recursively (just like EMD does [11]) with the
Ljung-Box Q-test result [25] as a decomposition termination criterion. According to spectral characteristics of intra-wave
modulated signals [13], we obtain the peak frequency in the power spectral density (PSD) of the current signal as a con-
stant initial IF, so that no additional IF guesses are needed. Through numerical examples, it is demonstrated that the INCMD
significantly outperforms state-of-the-art techniques of the same class. Using the INCMD, intra-wave modulations can be
captured with high accuracy and strong noise-robustness. These extracted modulation features by the INCMD greatly help to
identify simulated nonlinear single- (S-DOF) and multi-degree-of-freedom (M-DOF) systems, as well as the real ones. Most
importantly, the INCMD has a solid analytical foundation.

The structure of this paper is organized as follows. In Section 2, we briefly introduce the intra-wave modulation phe-
nomena in nonlinear responses. In Section 3, the idea and the algorithm of the INCMD are detailed, and then a numerical
example is provided to test the algorithm performance. Section 4 gives several examples including dynamic simulations and
applications to real data, to demonstrate the effectiveness of our method in decomposing synthetic nonlinear responses and
capturing intra-wave modulations embedded in them. Section 5 concludes this paper.

2. Intra-wave modulations of nonlinear responses

The modulation, including the amplitude modulation (AM) and the frequency modulation (FM), is a common phenom-
enon in an oscillatory signal. A well-known example is the chirp signal (see Fig. 1 (a)), which exhibits a smoothly increasing IF
and a wideband spectrum as Fig. 1 (b, c) shows. Every single wave in the chirp resembles a standard harmonic, i.e., modulation
occurs between waves and waves only. Herein, a single wave is called the intra-wave, and the relation between consecutive
intra-waves is called the inter-wave [11]. Intuitively, the modulation in the chirp signal should be regarded as the inter-wave
modulation, which is familiar to us.

In this sense, the definition for intra-wave modulations can be naturally drawn as ‘the frequency/amplitude changes from
time to time within a wave, its profile can no longer be a simple sine or cosine function [11]’. To demonstrate this phenomenon, an
example of the Stokes wave is given in Fig. 1 (d), the profile of which is governed by the second-order perturbation solution of
a nonlinear ocean system [11]:

x(t):la2k+acos wt+1a2k cos 2 wt, (1)

2 2
in which a is the amplitude and k is the wavenumber. Herein we use a = 2, k = 0.2, and & = 27 x 1/32 rad s~!. Instead of
inter-wave variations, an obvious intra-wave harmonic distortion exhibits in the Stokes wave (see blue and red lines in Fig. 1
(d)). Compared with the linear wave (i.e., the standard harmonic), the Stokes wave has a sharper crest and a flatter trough,
which is related to the velocity asymmetry of deep-water waves in the real world [11]. This asymmetry leads to an intra-wave
AM and FM effect. Using trigonometric identities, the perturbation solution (1) can be approximated further [12] with an
intra-wave form as
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Fig. 1. The inter-wave modulated chirp and the intra-wave modulated Stokes wave [11]. (a, b, c) are the temporal waveform, HHT spectrum, and Fourier spectrum
of the chirp respectively, while (d, e, f) are those of the Stokes wave.

X(t) = ag + ay cos wt + ay cos 2 wt = ag + A(t)cos(wt + ¢(t)),
with ag = %azk, a=a, ay= %azk <a (k<)

1 @y sinwt a .
f)=tan 1—2>" " =~ “Zgjput
o(0) a4 +acoswt  a ’ (2)

IAza0+A(t)=ao+\/a12+022+2a1a2coswtza0+a1+a2coswt,
1 1 wdy
[F= —(w+¢(t) = =— | w+—=c0s wt
30+ 8(0) = 50+ SR cos ).

and such approximations are indeed valid (see blue and black lines in Fig. 1 (a)). The periodically oscillating IF and IA obtained
in Eq. (2) is captured by the HHT spectrum as Fig. 1 (d) shows. What's worth noting is that the Fourier spectrum (see Fig. 1 (f))
only characterizes the structure of the perturbation solution, (i.e., the fundamental component (1X) and its superharmonic
(2X)), which is mathematically rigorous but physically meaningless.

The mechanism of intra-wave modulations generated in the Stokes wave works in various nonlinear systems. A general
mathematical model [14] for intra-wave modulated responses can be established further as

x(t) = ac(1 + eam cos(2mfapt))cos(2mfct + epy sin(2mfayt)), (3)

the IA of which fluctuates around the center value a. within a range of e4pac, while the IF fluctuates around f. within a range
of epyfpv. Two parameters ey, epy control the intra-wave AM and FM degree respectively. The Bessel functions [26] can be
used to expand the model signal (3) as



G. Tu et al. / Journal of Sound and Vibration 485 (2020) 115571 5

+00
t)= > Jn(erm){ac cos(2m(fe + nfem)t)
n=—co 4
+ 0.5eamac cos(2(fe + nfay + fam)t) @

+ 0.5eamac cos(2n(fe + nfay — fam)t)},

where J( -) is thenth-order (n< z) Bessel function of the first kind [26]. In the expanded signal (4), infinite harmonics exist
actually. When nonlinearity gets stronger (i.e., ep gets larger), the response no longer has a compact support in the frequency
domain since high-order Bessel functions will not attenuate then.

The Stokes wave comes from an S-DOF system. In practical M-DOF or even continuous systems, multiple modal responses
are coupled, each of which leads to a wideband mode [12]. Hence, to capture such dynamics, a key issue is to decompose the
raw response data into a series of physically meaningful nonlinear modes first and then extract the modulations features for
each of them. Multiple intra-wave modulated modes result in an overlapped spectrum. This task is, therefore, hard to
accomplish by using existing filter-bank-based decomposition techniques like the VMD [27] and EWT [22], and common TFA
tools with a poor resolution like the WT and SST will also fail when dealing with fast oscillating IF and IA. Different from the
HHT, VNCMD is a mathematically rigorous method for wideband multicomponent signal analysis [24], and its descendant
INCMD will be introduced in the next section to make it more suitable for nonlinear data analysis.

3. Iterative nonlinear chirp mode decomposition (INCMD)
3.1. Variational nonlinear chirp mode decomposition (VNCMD)
The VNCMD follows the basic idea of VMD [23] though, it does not require the narrow-band property of the model signal,

which is the prerequisite of VMD. VNCMD is specifically designed to analyze wideband signals with multiple constituent
nonlinear chirp modes (NCMs) [24], which can be expressed as

K K ¢
— S alt)= Zakmcos(zn / fk<r>dr+¢k), (5)
k=1 k=1 0

where ay(t), fi(t), ¢, stands for the IA, IF and the initial phase of the k-th NCMg,(t) respectively, and K denotes the total
number of NCMs. The point is that an NCM may have a wideband spectrum since its IF can vary in a wide range [24]. To
estimate each NCM and extract its modulation features, a similar scheme to that used in VMD is adopted in VNCMD:
demodulate each mode and minimize its bandwidth [28]. The first and also the key step in the demodulation procedure is to
rewrite the signal model (5) into another form as

K L
t)= Zgz‘ (t)cos (27r /fk(r)d1'> +gk )sin (277/fk dT) (6)
k=1 0
where g;f‘ (t) and gﬁz (t) are a pair of quadrature demodulated modes of NCMg(t) given as

ggl( ) = ai(t)cos (27r/(fk fk )dr + d)k)v

t
g (t) = —ay(t)sin (Zw [ Gin) ~Futmar + ¢k),
0

from which the IA of gi(t) can be recovered as

)=/ (o) + ()" (®)

The task here is to find the smooth function f(t), which is exactly the estimated IF of g (t ), to make the obtained g '(t)and
g;fz( ) in Eq. (7) have the narrowest band (i.e., the most compact spectrum [24]). The perfect f «(t) is the true IFfy (t) ltself with
which the FM effect in gi(t) can be eliminated. It is worth noting that the demodulation in VMD does not involve strategies
above but just acts as a frequency-shift operator (from the original band to the baseband [23]), which fails to change the
bandwidth of an NCM thus cannot reveal its true modulation pattern [24].

Following the idea above, the decomposition problem in VNCMD can be formulated as a variational model [28]:




6 G. Tu et al. / Journal of Sound and Vibration 485 (2020) 115571

min K ., 2 i 2
{0 () {at (t>},{fk(t>}{;(g? (0)], (f)t)}v
sub. to s(t) = klz(;g,‘f‘ (t)cos <2ﬂ/tf,<(7)dr> +82 () sm( / )
= 0

0

where the I, norm squared of the second-order derivative is used to evaluate the bandwidth of demodulated modes [29]. The
well-known alternating direction method of multipliers (ADMM) [30] is employed to address the constrained optimization
problem in Eq. (9) and the detailed algorithm is given in Ref. [24].

3.2. An iterative version of VNCMD for nonlinear data analysis: INCMD

Two main drawbacks exist in the VNCMD method: one is that the mode number K should be given in advance, the other is
that relatively good initial IF guesses for each mode are needed to start the ADMM optimizer. Priori information above is
essential in a joint-optimization problem, however, hard to obtain in practical applications. To address these two issues, the
INCMD, a descendant of VNCMD, is detailed next.

To eliminate the need for a known mode number K, the joint-optimization scheme is replaced herein by a step-wise
approach. The INCMD uses a modified VNCMD optimizer to extract only one mode first, subtract it from the signal, and
then iterate the process on the residual until a pre-set termination criterion is met [31], just like the EMD does [11]. Spe-
cifically, the variational model (9) in VNCMD is modified into

o e o], + gt o]}

g;’l( ), 85 (0),
¢ (10)

fi(®)
sub. to s¢(t) = cos( /t ) sm( / ) + Gres,
0

0

where gies is the residual after the k-th NCMg(t) is subtracted from the current signal s.(t). The residual is, however, un-
known a posterior. Adopting a greedy strategy [32,33], we obtain the desired mode by minimizing the energy of the residual
in each iteration, making the NCM extracted is always the dominating mode with the highest energy in the current signal. In
this vein, the modified objective function to be minimized in the discrete form can be obtained as

(e g 5) - ot

where the discrete time series is t = [tg, t1, -, tN,1]T.D denotes a second-order difference matrix, p is a penalty coefficient,
and (I>k, <I>k are two phase matrices as ®} = diag[cos(9(to)),cos(Ix(t1)),--,c0s(Fk(tn-_1))], <I>% = diag[sin(Vy(tp)),sin(I(t1)),
-, sin(Yy(ty_1))] in which 9, (t) =27 ]Ofk(r ydr. ~
The ADMM strategy is adopted to alternatively update the quadrature demodulated modes gd g and the estimated IF f,
in Eq. (11). First, we can easily find the optimal solutions for gcl gk by letting the gradient of the objective function with
respect to them be zero as

§+HDg22 §+p ‘Sc - (d)ﬁgg' +<I>ﬁgf<'2> i (11)

d 1.7 1\’
' 07, (gh. g2, fi) Jogi =0 (pD D+ (q)") @ ) <q,k) Sc,

-1
07,(g. g2 1,) /g0 <1DTD+ <<I> ) o ) (q,%)TSC.

d,*
g' =

(12)

dz* . dz
& =&

Next, the updated quadrature pair provides the increment for the IF updating (see formula (7)), which can be obtained
through the arctangent demodulation technique [24] as
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. 1d_ (g0 ghogh o -ghog o
Afy (t) = —5— —tan 1( k ) ==k k TRYAY
k 2w dt gzl (t) 2”((&?1 () )2 N (g}fz(f) )2> (13)

-1
f, =f, + (%DTD + 1) Af

where Af,” denotes the calculated increment, f;," is the final updated IF, and (2u~'D'D +I)~! acts as a low-pass Wiener filter
[34] to make the IF a smooth one in which D is a second-order difference matrix, I denotes an identity matrix, and u is a filter
bandwidth coefficient. Finally, the k-thNCMg,, can be constructed using the most recently available updates as

g =0 gl + &Y gl (14)

where tbi* and <I>ﬁ* are two phase matrices formulated by f;".

The updating procedure above can be executed iteratively until no significant differences exist between the latest two
results. Since decomposition of any noise makes no sense [31], the deterministic dynamics from random noise in the current
signal must be distinguished before each NCM extraction. Instead of using the conventional energy-based criterion (i.e., the
decomposition is stopped when the energy of the current signal is less than a pre-set threshold), we adopt the Ljung-Box Q-
test [25] to assess auto-correlation in the current signal as a more physically meaningful criterion. The Ljung-Box Q-test
statistic is given by [25].

m

~2
Qm) =N(N+2)Y P (15)
:1

where N is the length of the observed time series, m is the maximum tested lag, and p;, is the estimated auto-correlation
coefficient at the lag h. Under the null hypothesis of random noise, Q(m) follows a y2, distribution [25]. The significance
level is specified as 5% and we perform the test at multiple classic empirical m values at 5, 10, 15, and 20 (i.e., the null hy-
pothesis is finally accepted only when it is accepted at all tested lags) as a relatively conservative choice [35].

As mentioned at the beginning of Sub-section 3.2, VNCMD generally employs a time-frequency distribution (TFD) ridge
detection method to initialize the IF of each mode [24], which is time-consuming and not necessarily valid. Since the IF of the
intra-wave modulated signal tends to fluctuate around a center value which is noticeable in the spectrum (as discussed in
Section 2), we herein estimate the power spectral density (PSD) of the current signal to obtain the peak frequency as a
constant initial IF to start the iteration. The Welch's method [36] is adopted here and the signal is divided into eight segments
with a 50% overlap, each segment is weighted with a Hamming window.

Thus far, two issues about the unknown mode number and the IF initialization have been addressed and the whole INCMD
algorithm is given in Algorithm 1. With the dynamic response data as the input, the nonlinear modes and their IFs and IAs will
be the output. Nested iterative loops in the algorithm, which controls the extraction of one mode and the decomposition of
the whole signal respectively, make the INCMD more stable and efficient than the original VNCMD [28].

3.3. Algorithm performance test

A multicomponent signal s(t) consisting of three complex modes with the inter- and intra-wave modulation in the
meantime is considered to test the algorithm performance of the INCMD as
s(t) = g1(t) + g2(t) + g3(t) +n(t),
a(t) =1+ 0.3 cos(3nt), n~ ,/z/'(o, 02>,

g1(t) = a(t)cos (277( — 400t + 8003 — 45012 + 400t) +0.75 sin(40mt) ) (16)

& (t) = a(t)cos(2w(250t) + 0.75 sin(407t) ),

g3(t) = a(t)cos (27r< 4got3 +200¢% + 100t> +0.75 51n(407rt)>

where a(t) = 1 + 0.3 cos(3nt) governs the temporal waveform, and the IFs of three modes are IF; (t) =400 — 900t+ 2400t% —
1600t3+15 cos(407t),IF, (t) = 250415 cos(407t), and IF3(t) = 100 + 400t — 400t>+15 cos(407t) respectively. The signal is
contaminated by Gaussian white noise n(t) with a zero mean and a standard deviation ¢ = 0.2. The simulated signal (16) is
presented in Fig. 2.
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Algorithm 1
Nested iterative loops in INCMD

Input dynamic response data s to be analyzed
Initialize parameters p«<0.5, u«<0.5 and the convergence threshold ¢—10-8;

set the nonlinear mode counter k<« 0; let the current signal sc? «s;
Repeat

ke—k+1;
Set the iteration counter i — 0, obtain the initial IF f,> by Welch's PSD estimate; construct phase matrices <I>:’° and fI>ﬁ’° with f,2; calculate gf(" 0 g‘;”o

using (12) and g;° using (14);
Repeat
i—i+1; . .
Update the quadrature demodulated modes g‘,:"' and gf(l” using (12);

Update the IF f; using (13); ) )
Construct phase matrices ¢I>;" and d)i" with f,, update the nonlinear mode g, using (14), and calculate its IAa;/ using (8);

. i 1112 P12
Until convergence: ||g — g [5/|lgd |5 <e
Obtain the k-th nonlinear mode gy < g/, fi —f, a «<ay/, and update the current signal sck—sck-1 - g
Until no deterministic dynamics exhibits: the null hypothesis is accepted after the Ljung-Box Q-test on the current signal sck

Output nonlinear modes {gy},_1 ... and their IFs{f},_; ;... and IAs {ay};_q ...
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Next, different TFA methods, including WT, STFT-based SST (F-SST), WT-based SST (W-SST), HHT, a recently proposed tool
called ICCD [37] and our method INCMD are employed to obtain the TFD of signal (16), as given in Fig. 3. The Morlet scalogram
suffers from too poor a resolution (see Fig. 3 (a)), and the presence of the noise severely distorts the SST and the HHT spectrum
as Fig. 3 (b, ¢, d) shows. The ICCD uses parameterized Fourier series to characterize the IF and IA of each mode [37] and shows
good results in analyzing strongly modulated signals. This scheme still fails the challenge here as Fig. 3 (e) shows. The INCMD
spectrum gives a satisfactory result from which three modes can be identified clearly (see Fig. 3 (f)). Fig. 4 compares the
extracted modes by INCMD and those by VMD. Three nonlinear modes cannot be estimated accurately using the VMD method
due to the overlapped spectrum of intra-wave modulated modes (see Fig. 2), as discussed in Section 2.

The superiority of our method in capturing intra-wave modulations becomes apparent thus far. As mentioned in Section 2,
the INCMD aims to achieve a physically meaningful decomposition for nonlinear synthetic signals, making the obtained
nonlinear modes and their modulation features closely related to nonlinear dynamics [38,39]. We will demonstrate this point
further using all the following examples in Section 4.

4. Examples

In this section, we present several examples, including dynamic simulations and applications to real data, to illustrate the
effectiveness of the INCMD in decomposing nonlinear responses and capturing intra-wave modulations embedded in them.
In the meantime, the superiority of nonlinearity detections and identifications based on INCMD analyses is demonstrated.

4.1. Dynamic simulations

4.1.1. Parameter identification for S-DOF nonlinear systems

We start by considering an S-DOF Duffing oscillator in the state of damped free-vibration as
1i(t) + 2Lwoti(t) + wiu(t) + ewdu’ (t) = 0, (17)
u(0) = dg, 1(0) =0,

where wg denotes the linear natural frequency, ¢ is the damping ratio, v stands for the order of nonlinearity, ¢ is a small
parameter (generally e<«1) controlling the nonlinearity degree, and qy is the initial displacement. One can obtain intra-wave
modulation characteristics of such systems through a similar perturbation analysis to that used in the Stokes wave example in
Section 2. A detailed discussion is provided in Ref. [12]. Appendix A gives some essential results which will be utilized in this
sub-section. Since the HHT method is employed to analyze Duffing systems in many studies [12,40,41], comparisons between
analysis results by the HHT and the INCMD will be a focus in this sub-section.

In the first case, the quadratic nonlinearity is generated by setting parametersas{ =0.01,0y =27 rad s~ 1, = 0.1,y =2
and ag = 1in Eq. (17). Fig. 5 shows the original noise-free response (blue broken lines) and its noisy version (black solid lines,
contaminated by Gaussian white noise with the signal-to-noise ratio (SNR) = 20 dB; herein the SNR is computed as

-2 -2
0 02 04 06 0.8 1 0 02 04 06 0.8 1
(a) Time / Sec (b) Time / Sec

Fig. 4. Extracted modes from the multicomponent signal (16) by the (a) INCMD and (b) VMD, where the black solid lines in (a, b) are estimation errors, and the
red solid lines and green dashed lines in (a) stand for the estimated IAs and true IAs respectively. (For interpretation of the references to colour in this figure
legend, the reader is referred to the Web version of this article.)
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Fig. 5. A damped free-vibration response of the Duffing oscillator with quadratic nonlinearity. (a) Temporal waveform. (b) Phase diagram. (c) Power spectrum. (d)
Morlet scalogram. (e) W-SST Spectrum. (a, b, c) include both the noise-free and the noisy version, while (d, e) are calculated from the noise-free response only.

1Olog10(||u(t)||§ /]|u(t) — u(t) H%)). Traditional Fourier (see Fig. 5 (c)) or Wavelet analysis (see Fig. 5 (d, e)) can barely help in the
detection of nonlinearities since these two methods can only characterize the fundamental component (i.e., linear natural
frequency 1 Hz) in the response.

Comparisons between analysis results by the HHT and the INCMD are given in Fig. 6 and Fig. 7. We use the intra-wave
approximation (formula (A.1)) as a theoretical reference. In the noise-free case (see Fig. 6), only one signal mode is

) HHT Analysis 20
Estimated mode Estimated IF
- - = -Real response - - - -Theoretical IF g 1Hz
1 = Estimated 1A & -40
z S
(3 —
0 A -60
%
[T
-1 -80
(a) 0 10 20 (b) 0 10 20 (¢ 1 2 3 4
INCMD Analysis Freq./ Hz
2 1.1 0,
Estimated mode Estimated IF 1Hz
- - - -Real response N - - - -Theoretical IF g
1 — Estimated IA = 1.05 3 -40
= = =
= o = 60
0 = 1 I (%
A
-1 0.95 -80
@) ° 10 20 (e) O 10 20 (1)0 1 2 3 4
Time / Sec Time / Sec Freq./ Hz

Fig. 6. Comparisons between results by the HHT and INCMD method for a damped free-vibration response of the Duffing oscillator with quadratic nonlinearity.
(a, b, c) are the estimated mode, IF, and the power spectrum of the IF respectively by HHT, while (d, e, f) are those by INCMD.
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Fig. 7. Analysis results for the same response used in Fig. 6 but in a noisy environment (SNR = 20dB). (a, b, c, d) are the extracted IMFs by HHT, while (e, f) are the
estimated mode and its IF by INCMD.

obtained by both two methods (see Fig. 6 (a, d)), as expected. Note that the estimated IA is a smoothly dropping one with little
intra-wave modulation, which is due to the weak energy of higher harmonics in the response. The decreasing amplitude leads
to a gradually weaken IF modulation (refer to formula (A.1)) as Fig. 6 (b, e) shows. A significant deviation exists between the IF
estimated by HHT and the corresponding theoretical value (see Fig. 6 (b)). While using the INCMD, the real IF fluctuation
pattern can be revealed with high accuracy, as shown in Fig. 6 (e).

After qualitative judgment about the existence of nonlinearity, one can determine the order and the degree of nonlinearity
quantitatively by further analysis. The IF modulating frequency (which is the fundamental frequency 1 Hz in this case, see
Fig. 6 (¢, f)) indicates the presence of quadratic nonlinearity (refer to formula (A.1)). With this essential conclusion, one can
utilize the accurately estimated IF by INCMD together with the given theoretical model in formula (A.1), to estimate the
nonlinearity degree parameter ¢ through a least-squares fitting [12]. We also perform the same test in a noisy environment
(see Fig. 7). The presence of noise leads to a severe mode aliasing in IMFs extracted by EMD, while the INCMD still works well.

Next, we consider the cubic nonlinearity (i.e., let y = 3 while other parameters remain unchanged, The temporal wave and
spectrum of the response are not given again since no obvious differences exist between them and those shown in Fig. 5).
When this is the case (see Fig. 8), the HHT suffers from end-point effects [11], while the correct modulation pattern is revealed
again by INCMD. The fundamental frequency declines along with the amplitude (refer to formula (A.2)), resulting in an IF
trend which should be regarded as an inter-wave mode; in the meantime, a gradually weaken IF fluctuation exhibits around
this trend, denoting an intra-wave mode (see Fig. 8 (d) and refer to formula (A.2)).

Two IF modes above are coupled together. For clarity, we use the INCMD to decompose the estimated IF further, as given in
Fig. 8 (e, f). The intra-wave mode can be used to determine the nonlinearity order while the inter-wave mode is the estimated
skeleton curve [4] actually, with which the nonlinearity degree can be identified. Estimation results in a noisy environment
are given in Fig. 9. When using the HHT, the skeleton is severely distorted and cannot even indicate the correct nonlinear type
(i.e., hardening or softening, see Fig. 9 (b)). Parameter identification results in four cases above are summarized in Table 1.

Duffing oscillators are a class of essential models in engineering, nonlinear characteristics in responses tend to be sub-
merged when nonlinearity is weak. In this example, compared with common tools (including the Fourier/wavelet analysis
and the HHT), more accurate and noise-robust weak nonlinearity identification is achieved by capturing intra-wave mod-
ulations using the INCMD, especially in a noisy environment where the HHT barely works.

4.1.2. Sub-systems restoration form responses of M-DOF nonlinear systems
In the second example, we investigate a 2-DOF system with a hardening and a softening Duffing oscillator coupled
together [42], as Fig. 10 illustrates. The dynamic equation governing the system is

{ml)zl + (€1 + €)%y + (ky + ka)xy + kX3 — kaxy — CoXp =0, (18)

MyRy + (Co + C3)%p + (ky + k3)Xp + ksX3 — koXq — Cp%y =0,

withm; =my =1kg c; =002Nsm!,c; =003 Nsm!,cg =003Nsm1k =3mNm?'k = Nm,
ks =812 Nm ', ks =97 Nm!,and ks = — 11.2572 N m~!. The linear modal frequencies are f;, = 0.9756 Hz and
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Fig. 8. Comparisons between results by the HHT and INCMD method for a damped free-vibration response of the Duffing oscillator with cubic nonlinearity. (a, b)
are the estimated mode and its IF by HHT, while (c, d) are those by INCMD (e, f) stand for the inter- (i.e., the skeleton curve). and the intra-wave IF mode extracted

further by INCMD from the estimated IF shown in (d).
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Fig. 9. Estimated skeleton curves from the same response used in Fig. 8 but in a noisy environment (SNR = 20dB). (a) By INCMD. (b) By HHT.

Table 1
Nonlinearity degree parameter ¢ identification results using HHT and INCMD.
Simulating case Quadratic nonlinearity Cubic nonlinearity
Noise-free Noisy Noise-free Noisy
Reale 0.1 0.1
INCMD Identified ¢ 0.1046 0.0898 0.0951 0.0916
Relative error 4.6% 10.2% 4.9% 8.4%
HHT Identified ¢ 0.0497 0.0291 0.0917 —0.1884
Relative error 50.3% 70.9% 8.3% 288.4%

Note: In the noisy case the response is contaminated by Gaussian white noise with SNR = 20dB.
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Fig. 10. The schematic view of the 2-DOF system with a hardening and a softening Duffing oscillator coupled together.

fon =1.5160 Hz, and the linear modal shapes are ¢1,, ={5.1930, 1}T, ¢5, ={ — 0.1926, 1}".The damped free-vibration
response is simulated with the initial condition x;(0) = 1, x(0) = 0. Displacements of two masses X (t), x»(t) are given in
Fig. 11 (a).

We first employ the preliminary wavelet analysis. Natural modes centered on two linear modal frequencies can be
observed in scalograms (see Fig. 11 (b)). The dominating modes which take up most of the energy in two responses differ: one
is the first-order and the other is the second-order natural mode, embedding the hardening and the softening nonlinear
features respectively (as will be demonstrated later). It is the coupling that gives rise to such a multiplicity of nonlinear modes
in two observed motions [42].

In linear dynamics, the decoupling transformation from the physical space to the modal space creates a bridge between S-
DOF and M-DOF systems [43]. Herein, the INCMD method plays a similar role. The INCMD decomposes raw responses into
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~—
4 =
0.1 & v, 0
= 2% Softening Mod 0.2
Z 0 | S ottening Mode 50 60 70 80 90
2 !
| S
0.1 1
Hardening Mode
-0.2 0
50 60 70 80 90 50 60 70 80
02 Mass 2 S
0.1 N 4
an
= 0 2 Softening Mode
3 | ¢
=2
2
- S
0.1 1 i
Hardening Mode
0.2 0 : _
50 60 70 80 90 50 60 70 80 90 50 60 70 80 90
(a) Time / Sec (b) Time / Sec (c) Time / Sec

Fig. 11. A damped free-vibration response (displacements of two masses) from a 2-DOF system with a hardening and a softening Duffing oscillator coupled
together. (a) Temporal waveforms. (b) Morlet scalograms. (¢) Coupled nonlinear modes (blue lines) with estimated IAs (red lines) extracted by the INCMD. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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four coupled nonlinear modes [44] &1 (t), 1 (t), §2(t) and 7, (t) (see Fig. 11 (c)). Employing the skeleton extraction strategy used
in S-DOF examples in Sub-section 4.1.1, one can obtain skeleton curves of four nonlinear modes together with their IFs, as
given in Fig. 12 (a). The aforementioned “modal leakage” phenomenon manifests itself here: the nonlinear mode of a single
sub-system spreads over the whole modal space, where a clear intra-wave FM process underlies the dominating mode (mass
1, hardening mode and mass 2, softening mode respectively). Through the modal analysis above, the modal-spatial inverse
transformation is applied here to restore the initial spatial sub-systems [42]:

1) = (003 — #y02) /(0 = by), B(x2) = (#50% — g2 /(8 — ),

(19)
ket (x1) = (0 = w2) /(2 = ¢y), kea(x2) = ey (02 — 02) /(9 = ),

where wg, vy, ¢z = 1A(§2)/1A(§1), ¢y = —1A(1,)/1A(1) are modal skeletons and the corresponding modal shapes obtained

already, and w1, wy, ko, ko are the spatial skeletons and coupling stiffness related to two initial spatial uncoupled sub-

systems miXq + (€1 +C2)X1 + (ky +k2)x1 + k4x§ =0 and myX; + (c3 +€3)X2 + (k2 +k3)x2+k5x§ = 0. All the variables above

are functions of time.

In a rigorous sense, formula (19) is applicable only in linear dynamics. However, it also works here since nonlinearity
involved in this system is relatively weak. Fig. 12 (b, ¢, d) shows the restored initial spatial skeletons and coupling stiffness
coefficients with corresponding theoretical values. As a result, they coincide well. All the element stiffness can be further
estimated using least-squares fitting and an acceptable accuracy can be achieved (see Table 2).
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Fig. 12. Identified modal skeletons and restored initial spatial skeletons with coupling stiffness coefficients. (a) Identified modal skeletons from four decomposed
nonlinear modes in Fig. 11 (c). (b, ¢) Restored spatial skeletons of two initial sub-systems (hardening and softening type respectively). (d) Restored coupling
stiffness coefficients of two initial sub-systems.
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Table 2
Spatial sub-systems stiffness coefficients restoration results with the aid of INCMD.
kq(N/m) k4(N/m) k3(N/m) ks(N/m) ka(N/m)
Theoretical 29.6088 88.8264 78.9568 111.0330 9.8696
Restored 1 30.3185 (2.4%) 86.6057 (2.5%) N N 9.8846 (0.15%)
Restored 2 AN N 78.4612 (0.63%) 107.4799 (3.2%) 9.9136 (0.45%)

Note: Percentages in parentheses give the relative errors of the restored values.

The example in this sub-section demonstrates that when INCMD is applied to M-DOF nonlinear systems, decomposition
results are physically interpretable [44]. Spatial sub-systems restoration from measured responses can be expected with the
aid of the INCMD tool. HHT analysis results of two free-vibration responses are also given in Fig. 13. Either incomplete or
redundant IMFs are extracted, leading to a physically unexplainable decomposition.

4.2. Applications to real data

4.2.1. Vibration response of the beam with a breathing crack

Engineering structural beams work in the state of a linear vibration generally. However, breathing cracks, a common fault
caused by the beam fatigue, will result in a time-varying stiffness. In past studies, a piecewise linear (bilinear) stiffness model
was extensively adopted to simulate cracked beams [45]. As Fig. 14 illustrates, the piecewise stiffness function indicating the
breathing behavior of cracks, tends to fit a high-order polynomial. In this vein, the cracked beam is an S-DOF Duffing-like
system. Such nonlinearity, regrettably, is very weak thus hard to capture in practice, especially in the early stages of fail-
ure. To show the effectiveness of our method in practical applications, we use the INCMD to analyze the forced-vibration
response of a clamped-clamped beam with a breathing crack in this sub-section.

The experimental set-up is shown in Fig. 15. We use a 25 mm wide and 5 mm thick steel beam with a clear span of 550 mm
under fixed-end boundary conditions. An electromagnetic exciter delivering a periodic impact force (set to 60 Hz) is
employed. Response data are acquired using a laser displacement sensor which has a resolution of 2 pm and a specified
sampling frequency of 3000 Hz, and we use a pressure sensor to collect the real-time impact force. For comparison, we
consider a healthy beam and a faulty beam with a breathing crack of 3 mm depth introduced at 350 mm from the right
clamped end, respectively (see Fig. 15 (c, d)).

Fig. 16 gives forced-vibration responses of two beams. Due to the presence of the inevitable noise, two temporal waves
look similar and hard to distinguish (see Fig. 16 (a, b)). In their power spectrums (see Fig. 16 (c, d)), besides the excitation
frequency (1X), a rise in super-harmonics (2X and 3X) can be observed when the crack exists. Such nonlinear features are
magnified by INCMD as shown in Fig. 17. Only the 1X mode has been extracted when the beam is healthy, while for the
cracked beam, the response is decomposed into two intra-wave FM modes with 1X and 3X as the IF fluctuation center
respectively (see Fig. 17 (a, b)). Fig. 18 gives fluctuating properties (spectrums of IFs) further, the main fluctuating frequency
1X, which is the excitation frequency, directly relates to the breathing behavior of the crack [46]. Moreover, the minor
fluctuating frequency 2X (see Fig. 18 (b)) indicates a more frequent impact since crack breathing is a continuous, rather than a
two-phase process demonstrated in Fig. 14 actually [45].

Nonlinear features extracted above highly agree with that of the Duffing oscillator with quadratic nonlinearity as discussed
in Sub-section 4.1.1. With the collected impact force (system input) and the obtained IF and IA of the response (system output),
we employ the Feldman's ‘FORCEVIB’ method [47] (see Appendix B for detailed procedures, which is based on the Hilbert
transform originally) to verify the above conjecture.
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Fig. 13. HHT analysis results for two free-vibration responses in Fig. 11 (a).
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Fig. 14. The schematic load-displacement curve for a piecewise linear stiffness model [45].

The equivalent elastic and damping force of the cracked beam are obtained using the above method, as shown in Fig. 19.
Next, a fitting model is to be selected to describe the nonlinear characteristic forces. An obvious hysteresis exhibits in Fig. 19
(blue lines) thus the Coulomb friction force usign(x), a typical factor inducing hysteresis loops [48], together with various
types of nonlinear stiffness and damping (see Table 3) are considered as candidate models. Herein, the RMSE index (the
normalized root mean square error between raw data f and its fitting value f [49]) is adopted to determine the optimal fitting
model as
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Fig. 15. Experimental setup of the beam system. (a) Schematic view. (b) Picture (1, PC; 2, excitation signal generator; 3, electromagnetic exciter; 4, pressure
sensor; 5, steel beam; 6, fixed end using G-clamp; 7, laser displacement sensor; 8, sensor signal conditioner). (c) and (d) compares the healthy beam with the
cracked beam by a local close-up view.
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Fig. 16. Forced-vibration responses of two beams. (a, c) (blue lines) are the intercepted temporal waveform and the power spectrum of the response of the
healthy beam, while (b, d) (red lines) are those of the cracked beam. (For interpretation of the references to colour in this figure legend, the reader is referred to

the Web version of this article.)
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Fig. 17. TFD of the responses shown in Fig. 16 by the INCMD. (a) Healthy beam. (b) Cracked beam.
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Fig. 18. Estimated IFs and their fluctuating properties from the cracked beam response. (a, b) are the IF and its power spectrum of 1X intra-wave FM mode, while
(c, d) are those of 3X intra-wave FM mode.

RMSE(f) = ”mf; l2 (20)

where||-|| is the l,norm of the data vector.

Table 3 gives all the fitting results, where the optimal fitting model with the minimum RMSE value is the quadratic
stiffness and bilinear damping with the Coulomb friction. The finally identified mass-normalized governing equation can be
represented as

X4 CLHRX)X + c_H( — X)X + usign(x) + kyx + kox® =p(t), (21)

where c; = 6.3915e2, c_ = 1.3615e3, u = 0.6908, k; = 2.2695e6, k, = 1.6893e6, H(¢) and sign( e)is the Heaviside and
symbolic function respectively, and p(t) is the excitation force applied on unit mass. To check the validity of this model,
responses calculated numerically using the identified model and real responses measured from the test rig are compared in
Fig. 20. An excellent fit between them can be observed, which demonstrates the high accuracy of INCMD analysis results from
another angle.

W-SST and HHT are also employed to analyze two responses and results are provided in Fig. 21. W-SST can only capture the
fundamental component whether for the healthy or the cracked beam (see Fig. 21 (a, b)). Physically meaningless random IF
oscillations are extracted by HHT from both two responses, as Fig. 21 (c, d) shows. Unsatisfactory analysis results by these two
methods have necessitated the introduction of the INCMD in practical applications.
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Fig. 19. Identified equivalent nonlinear characteristic forces (on unit mass). (a) The elastic force with respect to the displacement. (b) The damping force with
respect to the velocity.
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Table 3
Fitting results using various nonlinear stiffness and damping models.
Models Estimated parameters RMSE
Stiffness kiHx)x +k_H(— x)x 2.2695e6, 1.6893e6 0.2443
Ky X + kox? % 1.9922e6, 1.4568e10 0.1580
kix + k3x3 1.9678e6, —2.4099e9 0.2492
Ky X + kgx* 1.9679e6, 2.0604e6 0.2492
Iy X + ksx® 1.9679¢6, —5.6459 0.2492
Damping c H(X)X + c_H(— X)X + usign(x) % 6.3915€2, 1.3615€3, 0.6908 0.3568
C1% + CoR|%| + psign(x) 1.2603e3, —2.82301e4, 0.4881 0.4836
1% + 3% + psign(x) 1.0883e3, —1.2527¢6, 0.7079 0.4838
C1X + C4%° |X] + usign(x) 9.1889e2, —2.3830e5, 1.1672 0.4855
C1X + CsX° + usign(x) 9.1853e2, —3.3617e3, 1.1684 0.4855

Note: H(e)is the Heaviside function and sign( ) is the symbolic function. % marks the optimal fitting model with the minimum RMSE value.

4.2.2. Cicada song signal

Mechanical-acoustic behavior underlies the “singing” signal of insects [50]. For instance, cicadas sing through the high-
frequency vibration of their “sound box”, a kind of resonant cavity structure with membranous coverings [50]. Nonline-
arity may exist due to the large deformation of membranes. Herein, we apply the INCMD to a cicada song signal, which is
collected outdoors through a microphone at Shanghai Jiao Tong University in June 2019 (see Fig. 22 (a)). The sampling fre-
quency is set to 11025 Hz.

Methods like HHT and W-SST fail this challenge due to the strong noise background as Fig. 22 (b) shows, and results are not
given here to save the space. Harmonic-like modes pitched at five levels are extracted by the INCMD and the residual shows
no auto-correlated dynamics, as Fig. 23 (a, b, ¢, d) demonstrates. In this sense, the INCMD acts as an effective denoise tool. It is
of interest that five modes all exhibit an oscillating IF (see Fig. 23 (d)), and the further Fourier analysis of five IFs indicates a
unified modulating frequency at 30 Hz as Fig. 23 (e) shows. We cannot give an in-depth analysis of this intriguing phe-
nomenon due to a lack of professional knowledge on entomology, but it is obvious that five modes share a common intra-
wave modulation mechanism, though they may come from cicadas of five different species.

5. Conclusions

This paper focuses on a highly accurate, noise-robust, and mathematically solid signal processing method termed the
INCMD to capture the intra-wave modulations of nonlinear responses. In the INCMD framework, the joint-optimization
scheme of the VNCMD is replaced by a recursive procedure adopted in the HHT, and thus the new method becomes more
adaptive without losing the rigorous mathematical foundation. Moreover, we obtain the priori IF information of the signal via
the power spectrum estimation and control the decomposition termination by the result of the Ljung-Box Q-test. Both
strategies are very effective and hardly increase the computational cost. Through a challenging numerical example, it has
been demonstrated that our approach outperforms state-of-the-art tools of the same class such as the SST, VMD, and ICCD.
Based on extracted intra-wave modulation features, the INCMD helps to accurately identify nonlinear S-DOF and M-DOF
systems, including the simulated as well as the real ones. Some noteworthy conclusions are summarized as follows:
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Fig. 20. The comparison between responses calculated numerically using the identified model and real responses measured directly from the test rig. (a)
Temporal waveform. (b) Power spectrum.
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Fig. 21. TFDs of the responses shown in Fig. 16 by other methods. (a, b) are the TFD of the healthy and the cracked beam response respectively by W-SST, while (c,
d) are those by HHT.

(1) The coupled inter- and intra-wave modulations in S-DOF nonlinear systems can be separated by the INCMD, and
estimation results are in good agreement with theoretical values originating from perturbation analysis, even in a noisy
environment.

(2) The INCMD decomposes responses from M-DOF systems to physically interpretable nonlinear modes [44], among
which the dominating mode exhibits obvious intra-wave modulations while the minor mode (which is introduced by
the coupling effect) barely does. A modal-spatial transformation [43] can be utilized to restore the initial spatial sub-
systems from the obtained modes.

(3) With the aid of the INCMD, one can distinguish between the response of the healthy beam and that of the cracked
beam, since the previous one is a standard harmonic process and the latter one exhibits intra-wave modulations. A
valid governing equation can be identified utilizing the INCMD analysis results. The INCMD also captures the hidden
intra-wave modulation pattern in a cicada song signal heavily contaminated by noise, which is very intriguing.

In all the examples, we also compare analysis results by other popular methods such as the HHT and W-SST with those by
the INCMD. The W-SST tends to sharpen the fundamental modes only, ignoring inherent modulation characteristics. The HHT
gives similar results to that by the INCMD but barely works in a noisy environment.

Nonlinear response data need to be carefully processed since complex dynamics underlie them. With a solid analytical
foundation, the INCMD technique will be of great benefit to a rigorous verification, a thorough understanding, an accurate
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Fig. 22. The collected cicada song signal. (a). Temporal waveform. (b) Morlet scalogram.
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Fig. 23. The INCMD analysis results of the cicada song signal. (a) Reconstructed signal. (b) Autocorrelation of the residual. (c). Five extracted modes (red solid
lines denote the IAs). (d) IFs of five modes (black broken lines stand for the mean values). (e) The power spectrum of five IFs. (For interpretation of the references
to colour in this figure legend, the reader is referred to the Web version of this article.)

characterization, and a full utilization of intra-wave modulation-related nonlinear phenomena, including those already and
yet to be discovered.
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Appendix A

Intra-wave modulation features of S-DOF Duffing system responses can be obtained by perturbation analysis. Some
important results utilized in Sub-section 4.1.1 in the main body are given here. For the conciseness of analyses, we omit the



22 G. Tu et al. / Journal of Sound and Vibration 485 (2020) 115571

damping in the system Eq. (17) (i.e., let £ = 0). When y = 2, the intra-wave approximation of the perturbation solution is
given by [12].

u(t) = aq + ay €os wit + a; €os 2wt = ag + A(t)cos(wit + ¢(t)),

2 2 2
. ea ea ea
with w = wg, ad:——o, a1:a0+—0==a0, a2:—0<<a1,
2 3 6
1 Gysinwqt a,
t)=tan '—=—————— = —=sin wqt,
o(0) aj +a; coswit a4 1 (A1)

IA=a;+A(t) =a4+ \/a12 + a2 + 20103 €OS w1t = ag + Ay + Ay COS W1t

1 1 w10y
IF= zﬂ(wl +¢(t) = o (w1 +Tcos wﬁ).

While for y = 3, the approximation is expressed as

u(t) = ay cos w1t + as cos 3wyt = A(t)cos(wqt + ¢(t)),

2,3 2.3
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_ 2 0“do” _ 0 a1 03 1 _ a3
W] =1/ e =uwg|1+e¢ ,o(t)=tan™'—="— """ = —Zsin 2wst,
1 0%+ 4 0( * 8 )'(p() ai +as cos 2wt ay !
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_1 | 2wia3
IF= ﬂ(w+<p(t)) =5 <w1 + cos 2w1t> .

Intra—wave

When formula (A.1) and formula (A.2) are utilized in Sub-section 4.1.1 in the main body, the initial displacement ag is
regarded as a time-varying amplitude which approximately equals to the obtained smooth IA [12].

Appendix B

The Feldman's ‘FORCEVIB’ method [47] is introduced briefly in this section.
In the case of a forced-vibration system with weak nonlinearity, the governing differential equation can be transformed
into another form as

K4 g0k + wR(Ox = p(t) /m, (B.1)

where wy(t) is the instantaneous natural frequency, h,(t) is the instantaneous damping, m denotes the mass of the system,
and p(t) stands for the excitation force applied to the system. With the obtained envelope (i.e., IA) A(t) and the IF w(t)
extracted from the measured displacement by signal processing method, the instantaneous damping and the instantaneous
natural frequency can be estimated using the following formulas [47]:
2w LA AL 24 Ao B Ao
wi(t)=w* + +—+ h(t) = Som " A~ 20 (B.2)

and «a(t) =Re[P(t) /X(t)], B(t) = Im[P(t) /X(t)] are real and imaginary parts of the system output and input ratio formulated as

_ p(o)x(t) + (t)?( ) jﬁ(t)x(f)er(f)?( ) (B.3)

)

X~ PO = R 2(0) + (1)

where x(t), p(t), X(t), p(t) are the displacement, the excitation force, and their Hilbert transforms respectively. Then the
equivalent displacement-dependent elastic force and the velocity-dependent damping force can be obtained as

Felastic(x) = w>2< (t)x(t)7 Fdamping(x) = hx'(t)x(t)' (B-4)
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Thus, the identification of the measured nonlinear system can be achieved non-parametrically. In the original method, the
IF and IA of the displacement are extracted using the Hilbert transform. Herein we use our method INCMD to estimate the IF
and IA, and only the principal nonlinear mode the IF of which is centered on the fundamental frequency 1X (see Fig. 17 (b) in
the main body) is considered in the identification scheme since the energy of the minor mode is weak. Prior to the system
identification, the steel beam was weighed and its net mass (the beam section excited) was found to be m = 0.4219kg.
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