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A B S T R A C T

Two-dimensional (2D) origami tessellations such as the Miura-ori are often generalized to build
three-dimensional (3D) architected materials with sandwich or cellular structures. However,
such 3D blocks are densely packed with continuity of the internal material, while for many
engineering structures with multi-physical functionality, it is necessary to have thin sheets
that are separately spaced and sparsely connected. This work presents a framework for the
design and analysis of multi-layered spaced origami, which provides an origami solution for 3D
structures where multiple flat sheets are intentionally spaced apart. We connect Miura-ori sheets
with sparsely installed thin-sheet parallelogram-like linkages. To explore how this connectivity
approach affects the behavior of the origami system, we model the rigid-folding kinematics
using analytic trigonometry and rigid-body transformations, and we characterize the elastic-
folding mechanics by generalizing a reduced order bar and hinge model for these 3D assemblies.
The orientation of the linkages in the multi-layered spaced origami determines which of three
folding paths the system will follow including a flat foldable type, a self-locking type, and a
double-branch type. When the origami is flat foldable, a maximized packing ratio and a uniform
in-plane shear stiffness can be achieved by strategically choosing the link orientation. We show
possible applications by demonstrating how the multi-layered spaced origami can be used to
build deployable acoustic cloaks and heat shields.

. Introduction

A large number of origami tessellations, such as the Miura-ori pattern, the Yoshimura pattern, and the Kresling pattern, can be
sed to build reconfigurable thin sheet structures (Evans et al., 2015; Callens and Zadpoor, 2018; Dudte et al., 2016). The Miura-ori
attern (Miura, 2009) is an especially popular pattern that has been widely explored and generalized because it is developable, and
nables flat and rigid foldability of large surfaces. Sareh and Guest (2015a,b) introduced methodologies for both isomorphic and
on-isomorphic Miura-ori descendant design; Eidini and Paulino (2015) proposed the zigzag folded sheets to expand on the design
pace of Miura-ori while preserving the remarkable properties of it; Kamrava et al. (2018) designed the Miura-ori-based origami
trings, which are slender sheet-like structures with programmable deployment trajectories. Two-dimensional (2D) origami sheets
ave also been generalized to build three-dimensional (3D) densely-arranged cellular blocks: the stacked Miura sandwich plates
Schenk and Guest, 2013; Chen et al., 2023; Schenk et al., 2014), assembled zipper tubes (Filipov et al., 2015; Li et al., 2016; Webb
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Fig. 1. Overview of multi-layered spaced origami explored in this work. (a) The heat shield of the James Webb Space Telescope is a typical structure
where multiple sheets are intentionally spaced; Image source: (Davis, 2023); (b) The multi-layered sheets are created by connecting Miura-ori with thin-sheet
parallelogram linkages. The link orientation angle 𝜂 affects the kinematic and mechanical behavior of the systems (scale bars are 4 cm).

et al., 2024), self-locking honeycombs (Gao and You, 2022; Fang et al., 2018, 2016), and architected multi-mode cells (Liu et al.,
2023; Jamalimehr et al., 2022; Fang et al., 2017) are some good examples of 3D cellular origami based on Miura-ori patterns.

These Miura-ori-inspired 2D origami sheets and 3D origami blocks can offer unprecedented mechanical properties, including
ultra-high stiffness (Zhu et al., 2023; Miyazawa et al., 2021), tunable Poisson’s ratio (Misseroni et al., 2022; Yasuda and Yang,
2015; Pratapa et al., 2019), multi-stability (Liu et al., 2022; Tao and Li, 2022), self-locking (Fang et al., 2018; Ye et al., 2023), and
fast deployability (Baek et al., 2020; Zhao et al., 2023). Engineers have used these properties of the Miura-ori to build materials
and structures across disciplines and scales, ranging from meter-scale deployable shelters (Thrall and Quaglia, 2014; Norman
and Arjomandi, 2017) to centimeter-scale tunable acoustic wave guides (Hathcock et al., 2021; Bentley and Harne, 2022) and
micrometer-scale electrothermal robots (Zhu et al., 2020; Wu et al., 2020).

Despite the outstanding properties and broad range of applications of the Miura-ori, existing designs cannot achieve multi-layered
and sparsely-connected sheets which are necessary for creating engineering systems such as heat shields, parallel plate capacitors,
and acoustic cloaks (see Fig. 1(a)). To function properly, these structures require a considerable amount of space between parallel
2D sheets, whereas existing 3D origami blocks such as stacked Miura sandwiches (Schenk and Guest, 2013) are densely packed
with continuous connectivity between the spaced sheets. The lack of an origami solution for multi-layered spaced sheets limits the
applications of adaptive functional structures for multi-physical purposes in engineering.

To address this issue, we develop a general framework for the design and analysis of multi-layered spaced origami, where multiple
flat sheets are intentionally spaced apart and are only connected by sparsely installed links. In Section 2, we demonstrated how to
design and fabricate multi-layered spaced origami by connecting individual Miura-ori sheets with thin-sheet parallelogram linkages
(see Fig. 1(b) for an overview). Section 3 presents an analytical model based on rigid body transformations to capture the folding
kinematics, and adapts a bar and hinge model to simulate elastic-folding behaviors. Then in Section 4, we studied the kinematic
and mechanical properties of the multi-layered spaced origami using the developed simulation tools. We explored how specific
design parameters lead to distinct folding paths, different packing ratios, and isotropic or anisotropic shear stiffness. In Section 5,
we designed and simulated meter-scale acoustic cloaks and adjustable heat shields using our multi-layered spaced origami to show
potential applications. Section 6 provides conclusions.

2. Design and fabrication of multi-layered spaced origami

2.1. Origami design and geometric definitions

Fig. 2(a) shows the design of the basic assembly for multi-layered spaced origami. We use rectangular links to connect two Miura-
ori sheets. Multiple strips with two folds are attached to the Miura-ori sheets so that each strip acts as a link and each crease acts as
a hinge. All the links are placed with the same link orientation angle 𝜂, and are symmetric about the s-s axis, the axis of symmetry of
the Miura-ori (see Fig. 2(c)). The entire structure can be seen as a double-layered Miura-ori coupled with parallelogram mechanisms.

Here, we define the coordinate systems and all the geometric parameters of our origami. As shown in Fig. 2(b, c), the global
origin 𝑜 is placed at the upper left corner of the bottom Miura sheet, and the global Cartesian system (𝑥, 𝑦, 𝑧) aligns with three
orthogonal axes of the Miura-ori. The geometry of the Miura unit cell, shown in Fig. 2(b, c), is defined by the two lengths a and
b, and the Miura sector angle 𝛾. The folded configuration of the Miura unit cell is then defined by the folding angle 𝜃, which is the
dihedral angle between the folded Miura panel and the 𝑥-𝑦 plane (Schenk and Guest, 2013). With all the parameters defined, we
can locate nine vertices of a Miura unit and thus determine the shape of the two Miura-ori sheets at any folded state.

Each link is a rectangle with width 𝑤 and length 𝑑. For our basic assembly, eight links are installed symmetrically about the
s-s axis with the same orientation angle 𝜂, as mentioned earlier. To locate the links during the folding of the basic assembly, we
2
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Fig. 2. Geometry, coordinates, and bar & hinge mesh of the basic multi-layered assembly. (a) The initial deployed state, a partially folded state, and a close-up
of a linkage connector (scale bars are 4 cm); (b) Geometry of a single Miura unit; (c) Geometry of the bottom Miura sheet with markings for the positions and
orientations of the eight links; (d) Geometry of the entire basic assembly; (e) Geometry of two of the eight links in (d); (f) Another pattern for link installation;
links can be installed at arbitrary locations on alternating panels along 𝑦 axis, as long as links have the same orientation angle 𝜂; (g) Bar & hinge mesh for
the basic assembly with boundary conditions and loads to achieve folding (the perturbation load is a follower load constantly in parallel with the incremental
displacement of the corresponding nodes during the search for equilibrium paths).

establish local coordinate systems (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) to describe the rigid body motion of the links (where 𝑖 is a number that labels the link;
see Fig. 2(d)). The local origin 𝑜𝑖 is placed at the outer vertex of the link, and the 𝑥𝑖 axis (the axis of rotation of the link) is defined
to be along the hinge and pointing toward the inside of the Miura panel. The 𝑦𝑖 axis is the other orthogonal axis lying on the Miura
panel, while the 𝑧𝑖 axis is an orthogonal axis that points out from the panel. Within the local coordinate system, we define the link
rotation angle 𝛽𝑖 which is the dihedral angle between the Miura panel and the link panel. With the global coordinates of the local
origin 𝑜𝑖 and the value of the link rotation angle 𝛽𝑖, we can determine the geometry of the links in 3D space. Later, we will prove
that all 𝛽𝑖 have the same value. We summarize all the design and kinematic control parameters of the basic assembly in Table 1.

Although the placement of the links in our basic assembly follows a specific pattern, these links can be placed arbitrarily between
the two origami sheets. That is, an arbitrary number of links can be installed at arbitrary positions as long as they remain consistent
in their orientation angle 𝜂 (see Fig. 2(f) for an example). While all links must have the same length 𝑑, they can have an arbitrary
width 𝑤 and thickness 𝑡2. These rules enhance the flexibility of the multi-layered origami design, which is especially useful when
the performance of origami devices is sensitive to the position and density of the inner fillings. We used paper sheets and plastic
strips to show the compatible folding of these systems, but our choice of materials does not affect the kinematics of the structure.
We will revisit these points in later sections.
3
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Table 1
Design and kinematic control parameters of the basic assembly.

Category Type Items

Design parameters
Miura 𝑎, 𝑏, 𝛾, 𝑡1 – Miura panel side lengths, sector angle, and thickness
Link 𝑑,𝑤, 𝑡2 – Link length (spacing), width, and thickness
Connection 𝜂 – Link orientation angle

Kinematic controlparameters Miura 𝜃 – Miura folding angle
Link 𝛽 – Link rotation angle

2.2. Fabrication

The fabrication of the basic assembly involves three main steps. We first perforate two sheets with a Universal Laser System (VLS
) to form the crease pattern for the Miura-ori. The sheets are made from 0.8 mm (𝑡1)-thick paperboard and each sheet consists of

one and a half Miura units (see Fig. 2(b, c)). We then use the same system to make 0.6 mm (𝑡2)-thick laser-cut Mylar® strips with
two creases. The middle segment of the strip acts as a link, and the two ends are connection tabs. Finally, we use Scotch® clear
lue to bond the sheets and strips via the tabs at the pre-defined positions, which are marked on Miura sheets by laser engraving
hen everything is at the flat state. We manually fold the entire assembly into a 3D shape after the glue cures.

By varying the orientation of the links and other design parameters, we have countless ways to connect the sheets and the
inkages. How are those combinations different and can we classify them? To answer this question, we model our basic assembly
n the next section.

. Modeling and testing approach

In this section, we detail our strategy for modeling and experimental testing of the designed multi-layered spaced origami. We
ocus on one single basic assembly, yet the same strategy applies to extended cellular structures.

.1. Modeling of the rigid-folding kinematics

First, we treat the folding of the basic assemblies as a rigid body motion problem and model the rigid-folding kinematics of the
ystem. Based on the geometry as defined in Fig. 2, a question can be raised: What conditions have to be met for our basic assembly
o be rigid-foldable? The rigid folding of the Miura-ori sheets and links is already guaranteed, so all we need is the kinematic
ompatibility between the sheets and links. The configuration of the Miura-ori (which can be treated as a single-degree-of-freedom
S-DOF) mechanism) is controlled by the folding angle 𝜃, while the configuration of the links is controlled by the link rotation angle
𝑖. Thus, 𝜃 and 𝛽𝑖 have to be coupled because the local coordinate system (𝑥𝑖, 𝑦𝑖, 𝑧𝑖) translates and rotates in the global coordinate
ystem (𝑥, 𝑦, 𝑧) as the bottom Miura sheet is folded. Therefore, the compatibility condition boils down to a quantitative relationship
etween 𝜃 and 𝛽𝑖.

To determine this relationship, we first give two premises about the rigid body motion of the origami: (1) the length of any edge
emains constant during folding; (2) any geometric relationship within an origami panel (Miura or link panel)1 remains unchanged
uring folding. We name the four vertices of ‘link 𝑖’ as 𝑜𝑖, 𝑝𝑖, 𝑞𝑖 and 𝑟𝑖, and we focus on the two links connected to the same Miura
anel (see Fig. 2(d, e)). Based on the two premises, the following mathematical derivation can be given:

𝑜1𝑝1 ∥ 𝑟1𝑞1 and 𝑜2𝑝2 ∥ 𝑟2𝑞2 (by Premise #2)
𝑜1𝑝1 ∥ 𝑜2𝑝2 (by Premise #2)

}

⇒ 𝑜1𝑝1 ∥ 𝑟1𝑞1 ∥ 𝑜2𝑝2 ∥ 𝑟2𝑞2, (1)

⃖⃖⃖⃖⃖⃖⃖⃗𝑜1𝑥1 ∥ ⃖⃖⃖⃖⃖⃖⃖⃗𝑜2𝑥2 and ⃖⃖⃖⃖⃖⃖⃖⃗𝑜1𝑦1 ∥ ⃖⃖⃖⃖⃖⃖⃖⃗𝑜2𝑦2 (by Premise #2)
|

|

𝑜1𝑜2|| = |

|

𝑟1𝑟2|| = constant (by Premise #1)
|

|

𝑜1𝑟1|| = |

|

𝑜2𝑟2|| = d (by Premise #1)

⎫

⎪

⎬

⎪

⎭

⇒ ∠𝛽1 = ∠𝛽2,

∠𝛽1 = ∠𝛽2 ⇒⊏⊐ 𝑜1𝑝1𝑞1𝑟1 ∥⊏⊐ 𝑜2𝑝2𝑞2𝑟2 ⇒ 𝑜1𝑟1 ∥ 𝑜2𝑟2,
𝑜1𝑟1 ∥ 𝑜2𝑟2

|

|

𝑜1𝑟1|| = |

|

𝑜2𝑟2|| = d

}

⇒⊏⊐ 𝑜1𝑜2𝑟2𝑟1 is a parallelogram ⇒ 𝑜1𝑜2 ∥ 𝑟1𝑟2,

𝑜1𝑜2 ∥ 𝑟1𝑟2
𝑜1𝑜2 ∥ 𝑝1𝑝2 and 𝑟1𝑟2 ∥ 𝑞1𝑞2 (by Premise #2)

}

⇒ 𝑜1𝑜2 ∥ 𝑟1𝑟2 ∥ 𝑝1𝑝2 ∥ 𝑞1𝑞2,

(2)

here 𝐴𝐵 represents a line determined by points 𝐴 and 𝐵, ⃖⃖⃖⃖⃖⃗𝐴𝐵 represents a vector pointing from point 𝐴 to point 𝐵, |𝐴𝐵| represents
the length of a line segment connecting points 𝐴 and 𝐵, ∠𝛼 represents the value of angle 𝛼, and ⊏⊐ 𝐴𝐵𝐶𝐷 represents a quadrilateral

1 An origami panel is a polygon connected to adjacent polygons by pre-defined creases.
4



Journal of the Mechanics and Physics of Solids 190 (2024) 105730G.W. Tu and E.T. Filipov

i
r
s
W
C
b
𝑥

connecting points 𝐴,𝐵, 𝐶 and 𝐷 in order. Combining the outcomes from Eqs. (1) and (2), we have

𝑜1𝑝1 ∥ 𝑟1𝑞1 ∥ 𝑜2𝑝2 ∥ 𝑟2𝑞2
𝑜1𝑜2 ∥ 𝑟1𝑟2 ∥ 𝑝1𝑝2 ∥ 𝑞1𝑞2

}

⇒⊏⊐ 𝑜1𝑜2𝑝2𝑝1 ∥⊏⊐ 𝑟1𝑟2𝑞2𝑞1, (3)

which means that any Miura panel at the bottom is always parallel to the corresponding panel at the top.
As mentioned earlier, the Miura-ori is a S-DOF mechanism fully controlled by the folding angle 𝜃. Two panels being parallel

ndicates that the bottom Miura sheet and the top Miura sheet have the same folding angle, so the top sheet is just the result of a
igid body translation of the bottom one. Also, Eq. (2) shows that all links have the same rotation angle 𝛽𝑖, and thus all links on the
ame side of the s-s axis are parallel. This is why the number and locations of the links do not matter, as mentioned in Section 2.
e assume that the translation from the bottom Miura to the top Miura as 𝛥𝑥, 𝛥𝑦, and 𝛥𝑧—three relative displacements along three

artesian directions, and we refer to all 𝛽𝑖 as just 𝛽. During rigid folding, the folded Miura sheets and the rotated links must always
e symmetric about the s-s axis (the central axis). Therefore, the top Miura has no relative displacement to the bottom Miura in the
direction, that is,

𝛥𝑥 = 0. (4)

Now, Eq. (4) is our compatibility condition, yet it is not an explicit relationship between the folding angle 𝜃 and the link rotation
angle 𝛽, so next we express the 𝛥𝑥 using the geometric parameters defined in Fig. 2.

The 𝛥𝑥 is also the relative displacement from link vertex 𝑜1 to link vertex 𝑟1 in the 𝑥 direction. This displacement is not easy to
obtain in the global coordinate system (𝑥, 𝑦, 𝑧), but in the local coordinate system (𝑥1, 𝑦1, 𝑧1), one can easily see that

𝛥𝑥1 = 0 , 𝛥𝑦1 = 𝑑 cos 𝛽 , 𝛥𝑧1 = 𝑑 sin 𝛽. (5)

Therefore, we can obtain 𝛥𝑥 by transforming the local displacement 𝛥𝑥1, 𝛥𝑦1, 𝛥𝑧1 to global displacement 𝛥𝑥, 𝛥𝑦, 𝛥𝑧. For that purpose,
we obtain the rotation matrix 𝐑 from the global coordinate system (𝑥, 𝑦, 𝑧) to the local coordinate system (𝑥1, 𝑦1, 𝑧1):

𝐑{𝑥,𝑦,𝑧}→{𝑥1 ,𝑦1 ,𝑧1} =
⎛

⎜

⎜

⎝

cos ⟨𝐱, 𝐱1⟩ cos ⟨𝐱, 𝐲1⟩ cos ⟨𝐱, 𝐳1⟩
cos ⟨𝐲, 𝐱1⟩ cos ⟨𝐲, 𝐲1⟩ cos ⟨𝐲, 𝐳1⟩
cos ⟨𝐳, 𝐱1⟩ cos ⟨𝐳, 𝐲1⟩ cos ⟨𝐳, 𝐳1⟩

⎞

⎟

⎟

⎠

, with

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

cos ⟨𝐱, 𝐱1⟩ =
𝑐4(−𝑐1𝑐3𝑐5+𝑐6𝑐12+𝑐6𝑐22)

√

(𝑐12𝑐42+𝑐22(𝑐42+𝑐52))(𝑐32(𝑐42+𝑐52)−2𝑐1𝑐3𝑐5𝑐6+𝑐62(𝑐12+𝑐22))
,

cos ⟨𝐲, 𝐱1⟩ =
𝑐1𝑐3𝑐42+𝑐5𝑐6𝑐22

√

(𝑐12𝑐42+𝑐22(𝑐42+𝑐52))(𝑐32(𝑐42+𝑐52)−2𝑐1𝑐3𝑐5𝑐6+𝑐62(𝑐12+𝑐22))
,

cos ⟨𝐳, 𝐱1⟩ =
𝑐2(𝑐3(𝑐42+𝑐52)−𝑐1𝑐5𝑐6)

√

(𝑐12𝑐42+𝑐22(𝑐42+𝑐52))(𝑐32(𝑐42+𝑐52)−2𝑐1𝑐3𝑐5𝑐6+𝑐62(𝑐12+𝑐22))
,

cos ⟨𝐱, 𝐲1⟩ =
−𝑐3𝑐4

√

𝑐32𝑐42+𝑐22𝑐62+(𝑐1𝑐6−𝑐3𝑐5)2
,

cos ⟨𝐲, 𝐲1⟩ =
𝑐1𝑐6−𝑐3𝑐5

√

𝑐32𝑐42+𝑐22𝑐62+(𝑐1𝑐6−𝑐3𝑐5)2
,

cos ⟨𝐳, 𝐲1⟩ =
𝑐2𝑐6

√

𝑐32𝑐42+𝑐22𝑐62+(𝑐1𝑐6−𝑐3𝑐5)2
,

cos ⟨𝐱, 𝐳1⟩ =
𝑐2𝑐5

√

𝑐22𝑐52+𝑐22𝑐42+𝑐12𝑐42
,

cos ⟨𝐲, 𝐳1⟩ =
−𝑐2𝑐4

√

𝑐22𝑐52+𝑐22𝑐42+𝑐12𝑐42
,

cos ⟨𝐳, 𝐳1⟩ =
𝑐1𝑐4

√

𝑐22𝑐52+𝑐22𝑐42+𝑐12𝑐42
,

(6)

where ⟨⋅, ⋅⟩ represents the angle between two vectors, and 𝑐1 − 𝑐6 are six constants defined by

𝑐1 = 𝐿, 𝑐2 = 𝑎 sin𝜓, 𝑐3 =
√

𝐿2 + (𝑎 sin𝜓)2 cos 𝜂,

𝑐4 = −𝑆, 𝑐5 = 𝑏 cos 𝜉, 𝑐6 =
√

𝑆2 + (𝑏 cos 𝜉)2 cos(𝛾 − 𝜂), with
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐻 = 𝑎 sin 𝛾 sin 𝜃,
𝑆 = 𝑏 tan 𝛾 cos 𝜃

√

1+tan2𝛾cos2𝜃
,

𝐿 = 𝑎
√

1 − sin2𝛾sin2𝜃,
𝑉 = 𝑏 1

√

1+tan2𝛾cos2𝜃
,

⎧

⎪

⎨

⎪

⎩

tan 𝜉 = cos 𝜃 tan 𝛾,
sin𝜓 = sin 𝜃 sin 𝛾,
cos 𝛾 = cos 𝜉 cos𝜓.

(7)

The derivation of Eq. (6) is given in Sec. S1.1 of the Supplementary Material. With the rotation matrix 𝐑, we have the coordinate
transformation as

⎛

⎜

⎜

⎝

𝛥𝑥
𝛥𝑦
𝛥𝑧

⎞

⎟

⎟

⎠

= 𝐑
⎛

⎜

⎜

⎝

𝛥𝑥1
𝛥𝑦1
𝛥𝑧1

⎞

⎟

⎟

⎠

= 𝑑

⎛

⎜

⎜

⎜

⎜

⎜

−𝑐3𝑐4 cos 𝛽
√

𝑐32𝑐42+𝑐22𝑐62+(𝑐1𝑐6−𝑐3𝑐5)2
− 𝑐2𝑐5 sin 𝛽

√

𝑐22𝑐52+𝑐22𝑐42+𝑐12𝑐42
(𝑐1𝑐6−𝑐3𝑐5) cos 𝛽

√

𝑐32𝑐42+𝑐22𝑐62+(𝑐1𝑐6−𝑐3𝑐5)2
+ 𝑐2𝑐4 sin 𝛽

√

𝑐22𝑐52+𝑐22𝑐42+𝑐12𝑐42
𝑐2𝑐6 cos 𝛽

√ − 𝑐1𝑐4 sin 𝛽
√

⎞

⎟

⎟

⎟

⎟

⎟

. (8)
5

⎝ 𝑐32𝑐42+𝑐22𝑐62+(𝑐1𝑐6−𝑐3𝑐5)2 𝑐22𝑐52+𝑐22𝑐42+𝑐12𝑐42 ⎠
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Finally, we let 𝛥𝑥 = 0 and get the explicit kinematic compatibility equation as

⎛

⎜

⎜

⎜

⎝

−𝑐3𝑐4
√

𝑐32𝑐42 + 𝑐22𝑐62 + (𝑐1𝑐6 − 𝑐3𝑐5)
2

⎞

⎟

⎟

⎟

⎠

cos 𝛽 =

(

𝑐2𝑐5
√

𝑐22𝑐52 + 𝑐22𝑐42 + 𝑐12𝑐42

)

sin 𝛽. (9)

Eq. (9) is an analytical, quantitative relationship between the Miura folding angle 𝜃 and the link rotation angle 𝛽. We can solve for
the value of 𝛽 once we substitute a value of 𝜃 into 𝑐1 − 𝑐6, and in this way, we obtain the geometry of the entire basic assembly.

Taking possible singularities of origami configurations and possible contact between origami panels into consideration (Zhu and
Filipov, 2019), we obtain four different solutions to Eq. (9) that mean four different types of 𝛽–𝜃 relations, and those relations
correspond to different folding paths and mechanical properties of our basic assemblies. We will discuss these different folding
paths in detail in Section 4.

Note that the procedure of deriving the compatibility equation here is generalized. Even if we include more geometric parameters
into the basic assembly design (for instance, an arbitrary initial link rotation angle 𝛽0), the compatibility condition in Eq. (4) still
olds and a similar governing kinematic equation can be derived through parameterization of the compatibility condition. With
pecific values assigned to the parameters of an extended basic assembly, classic 3D dense cellular origami designs such as the
tacked Miura sandwich (Schenk and Guest, 2013) can be obtained. More details can be found in Sec. S1.2 of the Supplementary
aterial. As more complicated designs do not bring new folding paths while making the fabrication more difficult, we only focus

n our basic assembly as described in Section 2.

.2. Modeling of the elastic-folding mechanics

In this sub-section, we model our basic assemblies from a mechanics perspective to explore elastic deformation to validate the
inematic simulations presented in Section 3.1, and to explore any elastic deformation phenomena that may arise during folding
f the systems. We use a reduced-order finite element method (FEM) where we treat our basic assembly as a truss structure and
odel its elastic-folding mechanics with a structural engineering technique. In this reduced-order FEM, we only use two types of

lements—bars and torsional springs (hinges). The basic idea of this bar & hinge model is to characterize the in-plane stretching and
shearing with bars, out-of-plane bending and twisting with bending hinges, and folding along creases with folding hinges (Filipov
et al., 2017).

The bar & hinge model is usually for 2D origami sheets, while in this study we generalize it to the 3D multi-layered origami
sheet system. For our basic assemblies, all folding creases naturally become the folding hinges; origami panels are prone to bending
along the diagonals (especially the shorter diagonals), so the line segments on the panels become the bending hinges; the bars are
placed such that the nodes on the links are properly connected to the nodes on the sheets. We present the bar & hinge mesh for a
basic assembly in Fig. 2(g). This mesh has 60 nodes (180 DOFs) and 64 triangular panels in total. The initial nodal coordinates are
defined based on the design parameters of the basic assembly.

We next add support constraints and loads to the mesh (see Fig. 2(g)). We apply six basic constraints on three nodes to eliminate
rigid body movement of the basic assembly (including three translations and three rotations). The folding load is placed on eight
nodes on the outer edge, and all eight nodal forces have the same magnitude and direction (along ‘−𝑥’). In addition to a folding
load, we apply a perturbing load2 on four nodes to initiate the origami folding because we start our mechanics simulation with the
ompletely flat state in this study. The directions of four perturbing forces follow the directions of nodal displacements of a folded
iura-ori, and the magnitude of the perturbing load is set to 1/100 of that of the folding load. We measure the displacement along

he loading direction (‘−𝑥’ direction) which is denoted as 𝛥.
We define elastic behavior of the bar & hinge model based on the material properties of the physically fabricated assemblies.

he paper sheets and plastic strips have Young’s moduli and Poisson’s ratios of 𝐸1 = 1.5 GPa (paper), 𝐸2 = 4 GPa (plastic), and
𝜈1 = 𝜈2 = 0.3. The thicknesses of the two materials are 𝑡1 = 0.8 mm and 𝑡2 = 0.6 mm. According to the experimental constituent
relations of folded thin sheets (Wo and Filipov, 2023; Filipov et al., 2017; Woodruff and Filipov, 2020), we can determine the values
of the equivalent bar & hinge parameters, including the folding stiffness 𝐾𝐹 , bending stiffness 𝐾𝐵 , and stretching stiffness 𝐾𝑆 , using
the material properties and the geometry of the triangular panels. The folding stiffness 𝐾𝐹 and bending stiffness 𝐾𝐵 are given by

𝐾𝐹 =
𝐿𝐹
𝐿∗

𝐸𝑡3

12(1 − 𝜈2)
, 𝐾𝐵 =

(

𝐿𝐵
𝑡

)1∕3 𝐸𝑡3

12(1 − 𝜇2)
(10)

where 𝐿𝐹 and 𝐿𝐵 are the lengths of the folding hinge and bending hinge, and 𝐿∗ is the characteristic length scale, which is typically
proportional to the material thickness (in this work, we set 𝐿∗ = 600𝑡 to represent creases that are much more flexible than the
bending hinges) (Lechenault et al., 2014). The stretching stiffness is given by

𝐴 = 0.36𝑆𝑡
𝐶(1 − 𝜈)

(

ℎ
𝐿𝑆

)1∕3
, 𝐾𝑆 = 𝐸𝐴

𝐿𝑆
, (11)

where 𝐴 is the cross-sectional area of the bar, 𝐿𝑆 is the length of the bar, 𝑆 and 𝐶 are the area and perimeter of the triangular panel,
and ℎ is the height of the triangular panel associated with the bar. If a bar is shared by more than one triangle, its stretching stiffness

2 We use load perturbation instead of geometric perturbation (which is another strategy to initiate the origami folding by slightly pre-folding the creases) because
6

we do not know the exact geometry of the folded basic assembly in advance (or even whether the basic assembly is foldable).
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Fig. 3. Experimental set-up for testing the basic assemblies (scale bars are 4 cm).

is calculated by summing the stiffness contributed by each panel (see Sec. S1.3 of the Supplementary Material for an example of
how we determine the values of bar & hinge parameters based on the material and geometric properties).

After meshing the basic assembly, defining the constraints, loads, and material constants, we solve for a displaced equilibrium
state. In this study, we use the modified generalized displacement control method (MGDCM) as the solver (Leon et al., 2014). As a
variant of the arc-length method, the MGDCM is an efficient algorithm for tracking complicated nonlinear equilibrium paths. The
load step size in the MGDCM is adaptively adjusted, allowing for reasonable accuracy and faster convergence. The tangent stiffness
matrix needed for MGDCM iterations is formulated by a potential energy approach (Liu and Paulino, 2017). The total potential
energy 𝛱 of our origami systems can be computed as:

𝛱 = 𝑈folding + 𝑈bending + 𝑈stretching + 𝑉external

=
𝑁
∑

𝑛=1

1
2
𝐾𝐹 ,𝑛

(

𝜑𝐹 ,𝑛 − 𝜑0
𝐹 ,𝑛

)2
+

𝑀
∑

𝑚=1

1
2
𝐾𝐵,𝑚

(

𝜑𝐵,𝑚 − 𝜑0
𝐵,𝑚

)2
+

𝑄
∑

𝑞=1

1
2
𝐾𝑆,𝑞

(

𝐿𝑆,𝑞 − 𝐿0
𝑆,𝑞

)2
+ 𝐟𝑇 𝐮, (12)

where 𝑈folding, 𝑈bending, and 𝑈stretching represent the internal folding energy, bending energy, and stretching energy computed based on
the rotation of the folding hinges, rotation of the bending hinges, and deformation of the bars; while 𝑉external represents the potential
of the external load. Here, 𝜑0

𝐹 and 𝜑0
𝐵 represent the initial values of the folding and bending angles respectively, 𝐿0

𝑆 represent the
initial bar lengths when the origami is unfolded, and 𝐟 and 𝐮 are the nodal load and displacement vectors. When a perturbation
load exists, it is included in the nodal load vector 𝐟 .

3.3. Experimental testing

We run experimental tests to verify our simulations using a Mark-10® ESM 1500 single-column tabletop testing system with a
250 𝑁 load cell (see Fig. 3). Our prototypes are placed between a top and a bottom plate, both made of acrylic. The assembly is
free to slide with respect to the two plates, and we did not apply any constraints because the deformation of the basic assembly can
be complex and any additional boundary conditions could over-constrain the system. We use a displacement control, and a loading
rate of 60 mm/min is used for all tests in this study. We record the displacement and the compression force at the same time with
a sampling rate of 20 Hz. In the elastic mechanics modeling in Section 3.2, we initiate the origami folding using load perturbation;
while in the experimental testing, geometric perturbation by slightly pre-folding the creases is much easier to implement and is thus
used in all experimental tests.

4. Kinematic and mechanical properties

In this section, we use the modeling and testing approach described in Section 3 to explore the kinematic and mechanical
properties of the basic assembly, and thus to find out how different ways of connecting the sheets and the linkages lead to different
categories of multi-layered spaced origami. The magnitude of the folding load is set to 1 and the initial load factor in the MGDCM
iteration (Leon et al., 2014) is set to 0.2 for all nonlinear mechanics simulations.
7
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Fig. 4. Rigid-folding kinematics of multi-layered spaced origami. (a) The relationship between the link rotation angle 𝛽 and the folding angle 𝜃. Each line
epresents a structure with a different link orientation angle 𝜂 in the range [0, 𝜋]; (b) Visualization of the four types of folding kinematics which are represented
s different line colors in (a).

.1. Rigid folding paths

In this section, we derive all the possible solutions to the kinematic compatibility equation (Eq. (9) that we derived earlier in
ection 3.1). Based on these solutions we compute the rigid folding paths of the multi-layered spaced origami. The two denominators
n the coefficients of ‘cos 𝛽’ and ‘sin 𝛽’ in Eq. (9) are always positive, so the properties of the solutions only depend on ‘𝑐3𝑐4’ and

‘𝑐2𝑐5’, the two numerators. We have five different cases:

• The General Case: 𝑐3𝑐4 ≠ 0, 𝑐2𝑐5 ≠ 0. The 𝛽–𝜃 relation in this case is given by

𝛽 = arctan

(

−𝑐3(𝜃)𝑐4(𝜃)
√

𝑐22(𝜃)𝑐52(𝜃)+𝑐22(𝜃)𝑐42(𝜃)+𝑐12(𝜃)𝑐42(𝜃)

𝑐2(𝜃)𝑐5(𝜃)
√

𝑐32(𝜃)𝑐42(𝜃)+𝑐22(𝜃)𝑐62(𝜃)+(𝑐1(𝜃)𝑐6(𝜃)−𝑐3(𝜃)𝑐5(𝜃))2

)

,

with 𝜃 ∈ [0, 𝜋∕2), 𝛽 ∈ [0, 𝜋],
(13)

where each 𝑐𝑖(𝜃), 𝑖 = 1, 2,… , 6 represents a function of 𝜃 (see Eq. (7)). The value of the link rotation angle 𝛽 is uniquely
determined by the value of the Miura folding angle 𝜃 in this case.

• Special Case 1 (Perpendicular link orientation): 𝑐3𝑐4 = 0, 𝑐2𝑐5 ≠ 0. This case occurs when 𝜂 = 𝜋
2 and 𝜃 ≠ 0, which indicates any

folded state of a basic assembly with the links oriented perpendicularly to the edge of the sheets. The link rotation angle 𝛽
can be 0 or 𝜋 in this case, but the only valid solution is 𝛽 = 0 because penetration exists between origami panels when 𝛽 = 𝜋
(as we will explain further when discussing Special Case 4).

• Special Case 2 (Initial unfolded states): 𝑐3𝑐4 ≠ 0, 𝑐2𝑐5 = 0. This case occurs when 𝜂 ≠ 𝜋
2 and 𝜃 = 0, which indicates the initial

unfolded state of a basic assembly with links that are not perpendicularly oriented to the edge of the sheets. The link rotation
angle 𝛽 should be 𝜋

2 in this case. This result matches with our design of basic assemblies where the two Miura sheets are
parallel and the links stand upright in the initial configuration (see Fig. 2(a)). This special case is included in the general
solution Eq. (13) as arctan(∞) = 𝜋

2 .
• Special Case 3 (Singularity): 𝑐3𝑐4 = 0, 𝑐2𝑐5 = 0. This case occurs when 𝜂 = 𝜋

2 and 𝜃 = 0, which means the initial unfolded state
of a basic assembly when the links are oriented perpendicular to the edge of the sheets. The link rotation angle 𝛽 can be any
value between 0 and 𝜋 in this case, leading to a singular configuration where 𝛽 is not uniquely determined by the folding
angle 𝜃. The other similar singularity occurs when 𝜂 = 0 or 𝜋 and 𝜃 = 0 (which represents the initial unfolded state when
the links are oriented parallel to the edge of the sheets).3 In short, the link rotation angle 𝛽 can be any value when the link
orientation angle 𝜂 = 0 or 𝜋 or 𝜋

2 and the Miura folding angle 𝜃 = 0.
• Special Case 4 (Contact): 𝑑(Panel𝑖,Panel𝑗 ) ≤ 0, where 𝑑 is the distance between any two origami panels. The kinematic

compatibility equation checks the rigidity of our basic assembly as a mechanism made of bars and hinges, but this strategy

3 When 𝜂 = 0 or 𝜋, 𝜃 = 0, and 𝛽 ≠ 𝜋
2
, the kinematic compatibility condition ‘𝛥𝑥 = 0’ no longer holds although the structure is indeed kinematically compatible.

This is the only case where that happens because this is the only case where the symmetry about the central s-s axis is broken (see Fig. 2(c)).
8
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fails to detect possible contact between origami panels (Zhu and Filipov, 2019). We can derive a mathematical condition for
contact (see Sec. S2.1 of the Supplementary Material for explanation):

𝛥𝑧 ≤

{

−𝐻
𝐿 𝛥𝑦 +𝐻𝑛, if 𝑛 = ceil(𝛥𝑦∕𝐿) = 2𝑘, 𝑘 = ⋯ ,−2,−1, 0, 1, 2,…

𝐻
𝐿 𝛥𝑦 −𝐻(𝑛 − 1), if 𝑛 = ceil(𝛥𝑦∕𝐿) = 2𝑘 − 1, 𝑘 = ⋯ ,−2,−1, 0, 1, 2,…

, (14)

where 𝛥𝑦 and 𝛥𝑧 represent the relative displacement of the top Miura sheet with respect to the bottom Miura sheet, which are
calculated by Eq. (8); 𝐻 and 𝐿 are the dimensions of a Miura-ori unit (see Fig. 2(b)); the ceil(𝑥) function computes the smallest
integer that is greater than or equal to 𝑥. The existence of penetration is why we rule out the ‘𝛽 = 𝜋’ solution in Special Case
1.

After considering all general and special cases, we compute the solutions to Eq. (9) and thus obtain all rigid folding paths of a
basic assembly with its geometry defined by 𝑎 = 𝑏 = 4 cm, 𝛾 = 60◦, 𝑤 = 1 cm, and 𝑑 = 2 cm. The link orientation angle 𝜂 is set
to different values within [0, 𝜋], and the computed 𝛽–𝜃 relations are given in Fig. 4. Four types of rigid folding paths exist: (1)
the blue cluster (𝜂 ∈ [30◦, 90◦)) represents a flat foldable kinematic motion. Each solution is a smooth curve from the initial state
𝜃 = 0◦, 𝛽 = 90◦ to the final flat state 𝜃 = 90◦, 𝛽 = 90◦, which means a continuous, rigid folding process of the origami; (2) the gray
clusters (𝜂 ∈ (0◦, 30◦) or (90◦, 180◦)) represent a kinematic path with self-locking. Each solution starts with the initial configuration
𝜃 = 0◦, 𝛽 = 90◦ and progresses smoothly but stops at a certain folding angle. Panel contact occurs prior to the flat state and the
origami cannot be folded further; (3) the black lines (𝜂 = 0◦ or 180◦) represent a double-branch kinematic motion. The first branch
(Path (i)) at 𝜃 = 0◦ is a vertical line because the initial unfolded state is a singular configuration, leading to a sway motion. The
second branch (Path (ii)) associated with 𝜃 > 0◦ is a kinematic path with self-locking prior to flat folding; (4) the red lines (𝜂 = 90◦)
represent the other double-branch kinematic motion. Similarly, the first branch (Path (i)) at 𝜃 = 0◦ represents a sway motion, while
the second branch (Path (ii)) associated with 𝜃 > 0◦ represents a flat foldable motion.

4.2. Elastic folding paths

We have identified all possible rigid folding paths of the multi-layered spaced origami, but do these structures behave the same
when they are made of non-rigid deformable sheets? To answer that question, we obtain the elastic folding paths using the bar &
hinge simulation introduced in Section 3.2 and we compare the two types of paths in Fig. 5. We choose link orientation angles
of 𝜂 = 60◦, 120◦, and 90◦ to explore as typical examples of the (a) flat foldable, (b) self-locking, and (c) double-branch kinematic
motions, respectively. For the flat foldable and self-locking types of kinematic motions, the analytical rigid folding motion and the
simulated elastic folding exhibit no observable differences (see Fig. 5(a) and (b)). The effectiveness of our bar & hinge simulation
approach is demonstrated by the excellent match between the simulated and experimental load–displacement curves in Fig. 5(a, ii)
and (b, ii). The self-locking property leads to a graded stiffness (see Fig. 5(b, ii)), which has various engineering applications such
as impact resistance (Wo et al., 2022; Ma et al., 2018; Wen et al., 2021).

The behavior of the double-branch kinematic motion, however, is distinctly different in terms of kinematics and mechanics.
In rigid folding kinematics, the origami configuration has to pass through the intersection (𝜃 = 0◦, 𝛽 = 0◦) for the system to
switch from Path (1) to Path (2) (see Fig. 5(c, i)). This kinematic folding process is visualized using a rigid prototype made of thick
(1.5 mm) acrylic plates and nearly frictionless steel hinges (see Fig. 5(c, iii)). While the rigid prototype experiences almost no elastic
deformation and folds according to the rigid kinematics, this is not the case when we fold an elastic prototype. As Fig. 5(c, i) shows,
the flexibility of the materials enables a smoother transition from path (1) to path (2). The transition state S1 in Fig. 5(c, iv) is a
configuration that is not possible for rigid origami. In other words, the flexibility of the thin sheets simplifies our actuation so that
only 𝐹𝑥, instead of both 𝐹𝑥 and 𝐹𝑦, is needed for origami folding. The two transition states S1 and S2 correspond to two strain energy
minima meaning two locally stable states (as shown in Fig. S5(c, i) of the Supplementary Material). These transitions also cause
two sudden drops in the forward path of the load–displacement curve (see Fig. S5(c, ii)), which makes the origami system exhibit
a snap-through-like behavior. However, the states S1 and S2 are both associated with a non-zero external load, so the system does
not have ‘load-free multi-stability’ here. In our exploration of the multi-layered spaced origami, we have not identified multistable
behaviors to occur, however such characteristics may be present with other stiffness parameters or loading of the structures.

Despite the smooth transition observed here, the elastic folding path approaches the rigid folding path as we increase Young’s
modulus of the materials, and vice versa, as Fig. 5(c, i) shows (𝐸0 denotes the Young’s modulus of the materials used to fabricate the
elastic prototype in Fig. 5(c, iv), while 0.5𝐸0, 0.8𝐸0, 1.5𝐸0, and 2𝐸0 represent other materials with lower or higher Young’s moduli).
The additional sway DOF of the double-branch kinematic motion makes the spacing between the sheets adjustable. This motion
which is demonstrated in the top of Fig. 5(c, iii) can be harnessed to design functional devices with tunable properties. We will give
an example later in Section 5. All the above folding behaviors can also be interpreted from a strain energy perspective and more
details can be found in Sec. S2.2 of the Supplementary Material.

4.3. Rigid foldability, flat foldability, and packing ratio

Rigid foldability and flat foldability are the most talked-about properties in origami design. Rigid foldability allows engineers to
9

construct origami structures with rigid, durable materials, while flat foldability makes origami structures as compact as possible
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Fig. 5. Comparison between the rigid and elastic folding paths for three different folding scenarios including (a) flat foldable 𝜂 = 60◦, (b) self-locking 𝜂 = 120◦,
and (c) double-branch 𝜂 = 90◦. In these figures, (i) show the rigid and elastic folding paths, (ii) show the simulated and experimental load–displacement curves,
and (iii–iv) show the folding processes of physical prototypes. The flat foldable and self-locking cases behave similar with elastic or rigid folding assumptions,
while the behavior of the double-branch folding depends on the elastic modulus. See the text for more details about (c). All scale bars are 4 cm.

when folded. Fig. 5(a) demonstrates the folding kinematics and mechanics of the multi-layered spaced origami corresponding to the
blue lines in Fig. 4(a) (the flat foldable type). The change of volume of the basic assembly observed in Fig. 5(a, iii) indicates that
the designed origami has a large packing ratio, which is defined as the volume of the unfolded origami/the volume of the folded or
stowed origami. In this work, we define the volume of the origami as the volume of the circumscribed cuboid of the entire origami
system. In the stowed configuration, we calculate the volume when the folding angle 𝜃 = 85◦.

Fig. 6 shows how the Miura sector angle 𝛾, the link orientation angle 𝜂, and the length of the links 𝑑 influence the rigid and
flat foldable design space and the corresponding packing ratio of the multi-layered origami. When 𝑑 is relatively small (𝑑 = 0.5𝑎),
only around 1

3 of the 𝜂–𝛾 space is available for rigid, flat foldable design. The design space is limited by the self-contact kinematic
path shown in Fig. 5(b). Because 𝑑 is also the spacing between the deployed Miura sheets, a small 𝑑 also leads to a more compact
configuration when the multi-layered origami is stowed. When 𝑑 is small, the other design parameters have little influence on the
packing ratio (see Fig. 6(b)). As 𝑑 increases, the design space for rigid and flat foldability expands because a larger spacing between
the sheets results in less interference during folding. For example, when 𝑑 = 2𝑎, around 3

4 of the 𝜂–𝛾 space is available. However,
when 𝑑 is larger, the packing ratio changes substantially when the other design variables are changed. The link orientation angle 𝜂
determines whether we can have an ‘optimal packing’. For example, when the Miura sector angle 𝛾 is 60◦, setting the link orientation
angle 𝜂 to 60◦ results in a structure with a packing ratio of 9 (marked with (i) in Fig. 6(a, b)). However, almost twice this value can
be obtained if we set 𝜂 to 160◦ (marked with (ii) in Fig. 6(a, b)). The two folding processes are shown in Fig. 6(c), and while the
deployed structures look similar the stowed geometries are markedly different. When the inner spacing in a multi-layered structure
is relatively large, we can strategically select the other design parameters, especially the link orientation angle 𝜂, to optimize the
packaging ratio. As such, we can design multi-layered spaced origami to achieve compact packing while maintaining rigid foldability
and flat foldability (Leanza et al., 2022; Lu et al., 2023).
10
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Fig. 6. Design space of rigid, flat foldable multi-layered spaced origami and the corresponding packing ratios. (a) The 𝜂–𝛾 design space for different sheet
spacings defined by link lengths 𝑑 of 0.5𝑎, 𝑎, and 2𝑎. The blue regions indicate the available design space where the system is rigid and flat foldable; (b)
Computed packing ratios. The curves are shown for 𝛾 angles of 40◦, 60◦, and 80◦, while the 𝜂 angle (𝑥 axis) varies within the corresponding design space in (a);
(c) An example of how the link orientation angle 𝜂 affects the packing ratio when the sheet spacing is relatively large (𝑑 = 2𝑎). The two designs are associated
with the points marked (i) and (ii) in (a) and (b). The two origami structures are both 4 × 3 × 2 blocks with the only difference being 𝜂1 = 60◦ and 𝜂2 = 160◦

(all scale bars are 2 cm).

4.4. Directional stiffness

Designing origami structures that have reasonable stiffness and prevent unwanted deformations has been an ongoing challenge
in engineering because origami initially has kinematic folding modes and is made of thin sheets that are prone to bending and
buckling (Filipov et al., 2015; Jamalimehr et al., 2022; Overvelde et al., 2016). In this sub-section, we evaluate the stiffness of
our basic assemblies along different directions. We first set up the constraints (boundary conditions) and loads in the bar & hinge
mechanics simulation. We first apply six constrains on the base of the structure to eliminate the rigid body movement of the basic
assembly in 3D space (see Fig. 7(a)). Origami structures are usually locked in place after deployment (Reis et al., 2015; Meloni et al.,
2021), so for our basic assembly, we lock three of the folding creases on the bottom Miura sheet by making their folding stiffness
large (see the ‘green locks’ on the folding creases in Fig. 7(a)). With these constraints, the rigid folding mode and rigid body motions
are eliminated, yet the entire structure is not overly constrained. We apply a distributed load to the basic assembly by placing forces
of the same magnitude and same direction onto 12 nodes in the top Miura sheet. Fig. 7(a) shows how the constraints and loads
are applied and the resulting deformed shapes when the basic assembly is loaded along three Cartesian axes (the deformation is
amplified 104 times).

Here, we only compute the linear stiffness under the assumption of small deformations by directly evaluating the stiffness matrix
𝐊. We calculate all nodal displacements using 𝐅 = 𝐊𝐮 where 𝐅 is the nodal force vector and 𝐮 is the nodal displacement vector.
Finally, we obtain a scalar representative stiffness 𝐾 based on the definition 𝐾 = 𝐹∕𝛥, where 𝐹 is the total magnitude of the applied
loads and 𝛥 is the average nodal displacement associated with all 12 nodes on the top Miura sheet.

Fig. 7(b, the left panel) shows how the directional stiffness of the basic assembly varies with the link orientation angle (with
𝛾 = 60◦, 𝑎 = 𝑏, and 𝑑 = 0.5𝑎). In general, the double-layered basic assembly with the bottom Miura sheet locked mimics the behavior
of a cantilever beam oriented along the 𝑧 axis: (i) the ‘axial stiffness’ 𝐾𝑧 is always higher than the ‘bending stiffness’ 𝐾𝑥 and 𝐾𝑦, and
it remains relatively consistent with respect to the link orientation; and (ii) the bending stiffness in the two orthogonal directions
𝐾𝑥 and 𝐾𝑦 change with the link orientation with opposing trends. When the link orientation angle 𝜂 approaches 90◦, the basic
assembly is stiff in the 𝑥 direction while flexible in the 𝑦 direction—the opposite is true when 𝜂 approaches 0◦ or 180◦. Similar to
a cantilever with a rectangular cross-section, the basic assembly with 𝜂 = 0◦ or 90◦ or 180◦ has a high bending moment of inertia
along one Cartesian axis and a low stiffness along the other axis within the 𝑥-𝑦 plane. While the behavior is similar to cantilevers
(and an individual link), the stiffness of the entire multi-layered basic assembly is not symmetric when the links are rotated (that
is, 𝐾𝑥 and 𝐾𝑦 curves are not symmetric about 𝜂 = 90◦ in Fig. 7(b, the left panel)). The loss of symmetry is caused by the additional
sway deformation mode of the origami at 𝜂 = 90◦ that we discussed in Section 4.1. Further explanations are provided in Sec. S3.1
of the Supplementary Material.
11
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Fig. 7. Directional stiffness characteristics of the basic assembly. (a) Deformation of the basic assembly where the bottom Miura sheet is locked and distributed
loads 𝐹𝑥, 𝐹𝑦, and 𝐹𝑧 are applied on the top Miura sheet in the three Cartesian directions (in this example, the link orientation is 𝜂 = 120◦, and deformations are
scaled by 104); (b) Left: Stiffness of the basic assembly in the three Cartesian directions 𝐾𝑥, 𝐾𝑦, and 𝐾𝑧 versus the link orientation angle 𝜂; Right: A polar plot
representing the stiffness of the structure when loaded in different directions in the 𝑥-𝑦 plane (the stiffness 𝐾𝑥𝑦). Curves are shown for different link orientation
angles 𝜂, and the case with an isotropic stiffness 𝐾∗

𝑥𝑦 is identified; (c) The isotropic link orientation angle 𝜂∗ and the corresponding stiffness 𝐾∗
𝑥𝑦 for different

Miura sector angles 𝛾; (d) A physical prototype that demonstrates the load-bearing capacity by isotropic design (the sample is a 2 × 3 × 3 block, and the link
orientation angle is 56◦, the value of 𝜂∗ when 𝛾 = 60◦; As we expect, the structure has a high relative stiffness in all three Cartesian directions, and the behavior
appears uniform for in-plane loading. All scale bars are 4 cm).

We then rotate the loads in the 𝑥-𝑦 plane and obtain the stiffness of the basic assembly for arbitrary directions of in-plane loading
(𝐾𝑥𝑦 shown as a polar plot in the right panel of Fig. 7(b)). The horizontal stiffness is presented for links oriented at different angles,
and when 𝜂 = 56◦, which corresponds to one of the intersections of the 𝐾𝑥 and 𝐾𝑦 curves in the left panel of Fig. 7(b), we get a
perfect circle meaning a uniform in-plane stiffness or an isotropic stiffness. The magnitude of the isotropic stiffness is still reasonably
high compared to the highest 𝐾𝑥𝑦 among all polar plots (the uniform stiffness is 6.9 × 104 N∕m while the highest is 1.1 × 105 N∕m).
We denote the magnitude of the isotropic stiffness as 𝐾∗

𝑥𝑦 and the corresponding link orientation angle as 𝜂∗. We then explore
the isotropic stiffness for basic assemblies with different Miura sector angles 𝛾, and we can see that the specific link orientation
angle for isotropic stiffness 𝜂∗ is always within the design space of rigid, flat foldable origami (see Fig. 7(c)). The magnitude of the
isotropic stiffness 𝐾∗

𝑥𝑦 remains reasonably high regardless of the Miura sector angle, and thus it is always possible to design the
link orientation angle if one wants to avoid an anisotropic behavior for in-plane loads. Fig. 7(d) shows a physical prototype that
demonstrates the load-bearing capacity with an isotropic design (the prototype is a 2 × 3 × 3 block, and the link orientation angle
is 56◦, the value of 𝜂∗ when 𝛾 = 60◦).

Despite the ability to achieve isotropic stiffness, our multi-layered spaced origami would have an overall lower stiffness than other
more continuous 3D Miura-ori assemblies such as stacked Miura-ori (Schenk and Guest, 2013) and Miura-ori tube assemblies (Filipov
et al., 2015). The stiffness of our design is lower because the Miura-ori sheets are only connected by sparsely arranged thin-sheet
links, while other 3D assemblies are densely packed with continuous internal material. Thus, the stiffness of the multi-layered
spaced origami is strongly affected by the design parameters of these connector links. We use mechanical simulations to find that
the isotropic stiffness 𝐾∗

𝑥𝑦 scales roughly with the link length as 𝑑−1, the link width as 𝑤
4
3 , and the link thickness as 𝑡

4
3 (see Sec.

S3.2 of the Supplementary Material for details). Therefore, the in-plane stiffness can be increased by thicker materials and wider
links, and it decreases linearly when the spacing between sheets increases.

5. Demonstration of potential applications

As mentioned in Section 2.1, the linkages between the sheets can be installed in any pattern without affecting the kinematics,
and the Miura-ori can be arranged to create spaced sheets that geometrically approximate complex shapes. These properties bring
12
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Fig. 8. Applications of multi-layered spaced origami. (a, b) Design and simulation of an acoustic cloak at the meter scale: (a) Dimensions of the folded and
unfolded cloak; (b) Numerical testing of the cloak. (c, d, e) Design and simulation of an adjustable heat shield: (c) Dimensions of the folded, unfolded, and
swayed shield; (d) An illustration of how the heat shield protects scientific instruments from high temperatures; (e) The thermal resistance 𝑅 changes with the
number of layers 𝑁 and the number of links 𝑛 for each layer.

great flexibility to engineering design. In this section, we give two examples to show how multi-layered spaced origami can be used
to build functional devices for multi-physical engineering applications. These examples are based on existing metamaterial designs
that have been verified by simulation and experimental testing (Popa et al., 2011; NASA, 2014). Here, we are providing an origami
solution to fold and deploy these structures rather than proposing new metamaterial designs or principles.

5.1. Meter-scale acoustic cloak

Evenly-spaced perforated plates can be used as an acoustic metamaterial to alter the effective properties of air and thus to achieve
acoustic invisibility (Popa et al., 2011). Metamaterials of this type are known as acoustic cloaks. Physical realizations of acoustic
cloaks have all been at the centimeter scales (Fleury et al., 2015). In this example, we use multi-layered spaced origami to design
a foldable acoustic cloak at the meter scale.

The first step is to design the basic assembly. We choose 𝜂 = 60◦ as the link orientation angle to make the cloak flat foldable,
rigid foldable, and a single-DOF mechanism. The values of all other parameters of the basic assembly are given in Sec. S4.1 of the
Supplementary Material. The corresponding Miura-ori unit cell is then used to tessellate nine thin plates. The nine plates of different
lengths are tilted to form a specific angle of 23.1◦ with the ground and are evenly spaced at a distance 𝑑 = 5 cm (which is the same
spacing as in our basic assembly). We drill circular holes of diameter 𝑠 = 8 mm at an interval 𝑑 in all nine plates, and assemble the
cloak by connecting the nine perforated plates with 80 sparsely mounted links. Details on the origami patterns of the nine plates,
the acoustic metamaterial unit cell design, and the entire deployment process of the cloaking structure can be found in Sec. S4.1 of
the Supplementary Material. The folded and deployed states of the origami cloak are shown in Fig. 8(a), and the packing ratio is
35.

The acoustic cloak only has cloaking effects when the origami structure is fully deployed. Numerical simulation validates the
performance of the acoustic cloak (see Fig. 8(b)). The simulation is done in COMSOL Multiphysics®. We perform a frequency domain
analysis in the Pressure Acoustics module using a plane wave with a frequency of 300 Hz and a Gaussian-modulated amplitude as
the incident wave. The origami panels are assumed to be made of acrylic plates that act as rigid walls and therefore do not interact
elastically with acoustic waves. As such, the spaced sheets with holes modify the effective bulk modulus and density of air and make
it suitable for acoustic cloaking (Popa et al., 2011). Compared to the perfect reflection in the pure ground case, severe scattering is
caused by a triangular object placed on the ground, which becomes an acoustic signature and makes the object detectable. After we
cover the object with the cloak, a near perfect reflection appears again with reflected waves appearing near identical to the pure
ground case. We set the frequency to 𝑓0 = 300 Hz in this example, but the cloak works well within a 𝑓0∕3 = 100 Hz bandwidth. More
results and discussions on the broadband performance of this system can be found in Sec. S4.1 of the Supplementary Material. The
designed cloak makes objects acoustically invisible at the meter-scale, and our origami design helps to achieve greater portability
and modular fabrication of the structure.
13
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5.2. Adjustable heat shield

Multi-layer insulation is a common strategy to reduce heat transfer between two environments, especially in aerospace (Incropera
nd DeWitt, 1996). In this example, we use multi-layered spaced origami to design a heat shield with adjustable thermal properties.
e set the link orientation angle 𝜂 to 90◦ so that in addition to the folding kinematics the basic assembly also has a sway degree of

freedom (see Sec. S4.2 of the Supplementary Material for the values of all other design parameters). This sway motion will allow
for varying the thermal properties of the system. As Fig. 8(c) shows, each layer of our heat shield is tessellated with the Miura-ori
unit cell and is a triangular ‘parasol’ roughly the size of a tennis court. Seven layers in total are connected by the 90◦-oriented links
nstalled on three corners of each layer.

The folded, unfolded, and swayed states of the heat shield are shown in Fig. 8(c), and the packing ratio is 9.6 (see Sec. S4.2 of
he Supplementary Material for the entire deployment process of the shielding structure). When the origami is fully deployed, the
-layer structure limits heat transfer by attenuating thermal energy layer by layer. Assuming a vacuum environment in space and
hat the entire structure is made of highly reflective materials such as aluminum, we calculate the thermal resistance 𝑅 of the heat
hield using (Incropera and DeWitt, 1996)

𝑅 =
𝑇1 − 𝑇2

𝜎(𝑇 4
1 − 𝑇 4

2 )
2
𝜀 − 1

1
𝑁 − 1
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(15)

here 𝑞′′𝑠ℎ𝑒𝑒𝑡𝑠 and 𝑞′′𝑙𝑖𝑛𝑘𝑠 are the heat flux due to the radiation through the sheets and the conduction through the links; 𝑇1, 𝑇2 are the
emperatures on the hot and cold sides; 𝑁 is the total number of layers while 𝑛 is the number of links for each layer; 𝐴 is the area
f a single sheet; 𝑑, 𝑤, and 𝑡 are the length, width, and thickness of the links; 𝜎 is the Stefan–Boltzmann constant, 𝜀 is the emissivity
f the sheets, and 𝑘 is the conductivity of the links. No heat convection exists, and the radiation and conduction are assumed to be
ncoupled.

According to Eq. (15), we can adjust the thermal resistance by changing the number of layers 𝑁 , and this can be achieved by
he sway mode of the designed origami. Fig. 8(c) shows the 5-layer heat shield after the top two layers are collapsed by using a
0◦ sway. We consider a real-life scenario where a scientific instrument in space needs a cool environment (𝑇2 = 36 K) to function
roperly while the sun (𝑇1 = 383K) keeps transmitting thermal energy to the system (see Fig. 8(d)) (NASA, 2014). For this scenario,
e calculate the thermal resistance by substituting 𝐴 = 249.75m2, 𝑑 = 0.4m, 𝑤 = 0.5m, 𝑡 = 1mm, 𝜎 = 5.7 × 10−8 Wm−2 K−4, 𝜀 = 0.05

for aluminum), and 𝑘 = 237 W m−1 K−1 (for aluminum) into Eq. (15). Fig. 8(e) shows how the thermal resistance changes with
he number of layers 𝑁 and with the number of links 𝑛 for each layer. We can adjust the thermal resistance over a wide range by
ollapsing layers through the sway motion (see the left panel in Fig. 8(e)), and thus adaptively protect the delicate instrument from
oth extreme heat and cold. We can also enhance the stiffness of the shielding structure by installing more links without significantly
ffecting the thermal performance (see the right panel in Fig. 8(e)). The links have a negligible effect on the thermal performance
ecause the links are always sparsely installed, and the size of the link connections is negligible compared to the size of the sheets.

Despite the demonstrated performance of the acoustic cloak and heat shield, the results presented in this section have limitations
ecause our work has made some assumptions regarding the simulations and we have not yet experimentally tested these systems.
or example, in our work, we have ignored the initial deformation of the cloaking structure caused by its own weight, and we have
lso ignored the possible coupling of heat radiation and heat conduction during heat transfer through the shielding structure. Future
ork could investigate how these and other practical considerations affect the performance of metamaterials made of multi-layered

paced origami.

. Conclusions

This work presents a general framework for the design of multi-layered spaced origami, where separate Miura-ori sheets are
onnected with thin-sheet parallelogram linkages. We studied the kinematic and mechanical behavior of these multi-layered spaced
rigami systems by combining theoretical modeling, reduced-order FEM simulations, and physical experiments. The proposed
odeling approach enables effective design and analysis of structures where multiple thin sheets are separately spaced and sparsely

onnected rather than bonded by continuous internal material. The multi-layered spaced origami has broad applications in multi-
hysical engineering scenarios such as architectural acoustics, space structures, and energy harvesting. Our main conclusions are
ummarized as follows:

• An analytical kinematic compatibility equation for rigid folding of multi-layered spaced origami is derived based on spatial
trigonometry and rigid body transformation. This compatibility equation represents the quantitative relationship that couples
14
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• The link orientation angle 𝜂 determines which of three unique solutions will satisfy the kinematic compatibility equation.
These solutions represent three types of kinematic folding paths the origami system will follow including (i) a flat foldable
path where the system folds continuously from a deployed to a stowed state, (ii) a self-locking path where the system folds
continuously but will self-lock at a certain folding angle, and (iii) a double-branch path where the system can have a sway
motion between the spaced sheets yet can also fold continuously following a flat foldable path when 𝜂 = 90◦ or a self-locking
path when 𝜂 = 0◦ or 180◦.

• The stiffness of the base pattern material does not have a significant influence on the folding behavior when the system folds
along the flat-foldable or self-locking kinematic paths. In these scenarios, the elastic folding behavior matches well with the
theoretically derived kinematics. On the other hand, in systems with a double-branch folding path (when 𝜂 = 90◦), the elastic
behavior deviates from rigid folding. More flexible materials cause the system to jump from the sway branch to the flat-foldable
branch when the system is subjected to a single-direction load instead of requiring loading in two different directions (which
is typically needed to overcome bifurcation points). This behavior simplifies actuation of the origami system.

• A larger spacing between sheets brings less interference during folding and thus enlarges the design space for rigid and flat
foldable multi-layered spaced origami. However, a larger spacing also causes less compact packing. By strategically choosing
the link orientation angle 𝜂, we can achieve the largest packing ratio when all other design parameters are fixed.

• The folding mode of a multi-layered spaced origami system can be locked to convert the mechanism into a structure with
shear and axial stiffness. For any Miura pattern geometry, we can find an optimal link orientation angle 𝜂∗ such that the
structure has a uniform stiffness in all in-plane directions. These optimal solutions 𝜂∗ are all within the design space for rigid
and flat foldability. The magnitude of the uniform stiffness 𝐾∗

𝑥𝑦 is reasonably high compared to the highest stiffness that can
be achieved in all non-uniform-stiffness cases.

• We designed and simulated an acoustic cloaking structure and a heat shielding structure at the meter-scale using the basic
assemblies of multi-layered spaced origami. Both origami structures have a flat-foldable folding path, making them portable
and modular. The heat shield is also adjustable regarding the thermal resistance thanks to the sway mode of the double-branch
kinematic path when 𝜂 = 90◦.
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