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ARTICLE INFO ABSTRACT

Communicated by J. Antoni Convolutional neural network (CNN) is widely used in fault diagnosis of mechanical systems
due to its powerful feature extraction and classification capabilities. However, the CNN is a
typical black-box model, and the mechanism of CNN’s decision-making is not clear, which
limits its application in high-reliability-required fault diagnosis scenarios. To tackle this issue,
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Interpretability we propose a novel interpretable neural network termed as time-frequency network (TFN),
Intelligent fault diagnosis where the physically meaningful time-frequency transform (TFT) method is embedded into
Prognostics and health management the traditional convolutional layer as a trainable preprocessing layer. This preprocessing layer

named as time-frequency convolutional (TFconv) layer, is constrained by a well-designed kernel
function to extract fault-related time-frequency information. It not only improves the diagnostic
performance but also reveals the logical foundation of the CNN prediction in a frequency
domain view. Different TFT methods correspond to different kernel functions of the TFconv
layer. In this study, three typical TFT methods are considered to formulate the TFNs and their
diagnostic effectiveness and interpretability are proved through three mechanical fault diagnosis
experiments. Experimental results also show that the proposed TFconv layer has outstanding
advantages in convergence speed and few-shot scenarios, and can be easily generalized to
other CNNs with different depths to improve their diagnostic performances. The code of TFN
is available on https://github.com/ChenQian0618/TFN.

1. Introduction

Nowadays, fault diagnosis of mechanical equipment is widely used in industry to reduce property damage and improve
production efficiency [1,2]. With the development of sensor technology and the industrial internet, a large amount of operation
and maintenance data could be obtained by various sensors [3], such as accelerometers, dynamometers, and microphones. Based
on sufficient operation and maintenance data, the data-driven method [4], as a model-free solution with high diagnostic accuracy,
has gradually gained more and more attention in the field of mechanical equipment fault diagnosis.

The process of data-driven fault diagnosis can be divided into three steps: data acquisition, feature extraction, and fault
classification [5]. Among these steps, feature extraction is the key to fault diagnosis [6,7]. Traditional feature extraction mainly relies
on signal processing methods, including Fourier transform (FT), short time Fourier transform (STFT), wavelet transform (WT) [8],
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and empirical mode decomposition (EMD) [9]. Using these methods, researchers can transform raw maintenance data (i.e., vibration
signals) from the time domain into the frequency or time-frequency domain, and thus extract essential features for fault classification.
However, such a strategy requires too much expertise and prior knowledge, which is difficult to be widely conducted in real industrial
scenarios. Therefore, deep learning, conducting feature extraction and classification automatically, becomes the promising solution
for mechanical fault diagnosis [5].

As a powerful representation learning technique, deep learning provides end-to-end solutions and is widely used in computer
vision [10], natural language processing [11], game competition [12], and other fields. In terms of fault diagnosis, deep learning has
a series of nonlinear mapping layers to extract hidden key information from vibration signals. Many deep learning models have been
applied to mechanical fault diagnosis, such as deep belief network (DBN) [13], convolutional neural network (CNN) [14-16], and
recurrent neural network (RNN) [17]. Among these neural networks, CNN-based models can fully extract the spatial information of
the input signal and thus leads to high diagnostic accuracy in multiple public datasets for mechanical fault diagnosis [18].

Despite its superior diagnostic performance, the CNN has a weak spot — its interpretability [19]. It is difficult to find the logical
foundation of the CNN model for feature extraction and classification. This reduces the credibility of the results and prohibits the
breakthrough of the model performance, which in turn limits its application in high-reliability-required fault diagnosis scenarios
(e.g. aero engine fault diagnosis [20]). Therefore, it is of great importance to develop interpretable CNNs for high-quality fault
diagnosis of mechanical systems.

The research of interpretable CNN is a growing topic in the Al field [21,22]. Current interpreting methods can be roughly
divided into four categories [23]: rule type, semantic type, attribution type, and example type. Rule type is to extract the mapping
relationship of CNNs into specific logical rules (e.g., CEM [24], CDRP [25]). Semantic type is to completely analyze the meaning of
specific hidden layers in CNNs (e.g., Network dissection [26]). Attribution type is to quantify the contribution (or negative effect)
of the input and features (e.g., salient map [27], Grad-CAM [28], IG [29]). Example type is to summarize typical samples related
to the category (e.g., Prototype Net [30]). The above interpreting methods are mainly designed for 2D images, and when it comes
to 1D vibration signals in mechanical fault diagnosis, these techniques are not suitable.

At present, there are few studies to explore the interpretability of CNNs in the field of mechanical fault diagnosis. Li et al. [31]
calculated the importance weight of each point of the vibration signal sample to the CNN prediction through the integrated gradient
(IG) method, and they explained the foundation of prediction-making through the frequency spectra of calculated weights. Wu
et al. [32] transformed 1D vibration signals into 2D time-frequency spectra as the input samples, so that the 2D interpreting
method (i.e., Grad-CAM) could be adopted to obtain the model attention area. Wang et al. [33] extended the extreme learning
machine (ELM) to an interpretable structure for machine state monitoring. With this strategy, the information frequency band can
be automatically located. Zhao et al. [34] incorporated the reproducing kernel Hilbert space (RKHS) into the convolutional layer and
built a specific interpretable denoising convolutional layer. Li et al. [35] combined continuous wavelet transform with convolutional
layers to formulate a wavelet kernel network to extract interpretable features. The above studies explained the mechanism of CNNs
in fault diagnosis to some extent, but their interpretations are usually ambiguous and need some subjective understandings (e.g., the
similarity between different frequency spectra of inputs [31], the sensibility of CNN to impulsive signal [35]). On top of that, these
strategies may bring some other issues: degraded diagnostic performance and poor generalizability.

To propose an interpretable CNN model for fault diagnosis, we set our sights on traditional signal processing methods which are
physically meaningful and good at feature extraction. Considering that the Fourier-type transform and the convolutional layer can be
both regarded as inner products, we embed the time-frequency transform (TFT) method into the traditional convolutional layer. This
leads to a novel layer named time-frequency convolutional (TFconv) layer, which is constrained by a well-designed kernel function
in order to extract fault-related time-frequency information. Using the TFconv layer as the preprocessing layer, we constructed the
time-frequency network (TFN) for fault diagnosis tasks. With this interpretable TFN, we not only improve the accuracy of fault
diagnosis, but also reveal the logical foundation of prediction-making in the frequency domain through the frequency response
analysis. A series of mechanical fault diagnosis experiments verify the superior diagnostic performance and the clear interpretability
of TFN.

The idea of combining signal processing methods with neural networks has already been proposed in the previous works as shown
in Table 1, but our method has enough novelty and is distinguished in the following three aspects. 1) Distinctive motivation: Our
method tries to parameterize the convolutional layer to simulate time-frequency transform which is very novel against the existing
literature; 2) Considering complex value kernel: Previous works [35-37] are trying to initialize or parameterize real value kernel and
are equivalent to FIR filters, whose outputs are the filtered sub-signals, while our work takes complex value kernel in consideration
and is equivalent to time-frequency transform, whose output is the energy distribution of the signal in the time-frequency domain.
3) A win-win of performance and interpretability: our proposed method not only improves the accuracy of fault diagnosis, but also
explains the focusing frequency of CNN models.

The main contributions of this study could be summarized as follows:

1. TFconv layer with excellent interpretability is proposed, which can extract time-frequency information to obtain a better
diagnostic performance.

2. All the inner-product-based TFT methods can be embedded into the TFconv layer as kernel functions, and three typical TFT
methods are considered to formulate corresponding TFconv layers and further be analyzed.

3. Frequency response analysis is performed on the well-trained TFconv layer to explain the logical foundation of feature
extraction and prediction-making of TFN in the frequency domain. Besides, experimental results demonstrate that the
proposed TFconv layer has outstanding advantages in convergence speed, few-shot ability, and generalizability.
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Table 1
The representative works related to our method.
Method Application Motivation
SincNet, 2019 [36] Speaker recognition Parameterizing real value convolutional kernel by trainable sine
function
W-CNN, 2020 [37] Discharge detection Initializing real value convolutional kernel by wavelet function
WKN, 2022 [35] Fault diagnosis Parameterizing real value convolutional kernel by trainable wavelet
function
DeSpaWN, 2022 [38] Unsupervised monitoring Designing a new layer to simulate wavelet decomposition
TFN Fault diagnosis Parameterizing complex value convolutional kernel to simulate
(our method) time-frequency transform and interpreting the attention that CNN

paid to different frequencies

The rest of this article is organized as follows. Section 2 introduces TFT and CNN as the theoretical foundation. Based on Section 2,
the construction of the TFconv layer, the interpreting method, and the diagnosis procedure using TFN are presented in Section 3.
In Section 4, three mechanical dataset experiments are carried out to verify the diagnostic performance and interpretability of TFN.
Section 5 introduces the essential differences between TFNs and contrast models, and conducts further analyses of training time,
convergence speed, few-shot ability and generalizability of proposed TFNs. Finally, conclusions are given in Section 6.

2. Preliminary
2.1. Time-frequency transform

Time-frequency transform (TFT), based on the inner product, is a signal processing method and is widely used for mechanical
fault diagnosis. Mathematically, the purpose of the inner product is to measure the similarity, and any vector could be decomposed
into a set of orthogonal bases by means of the inner product. Considering the 1D vibration signal as a vector, we can decompose
the signal in the same way. Fourier transform, the most fundamental signal processing method, takes the frequency-orthogonal sine
function as the basis and decomposes the vibration signal through the inner product to obtain the energy of the vibration signal at
different frequencies, i.e., the frequency spectrum:

+00

X = / x()(@? ) dt = (x(0), &' e)
—0o0

where X(f) denotes the frequency spectrum, x(r) denotes the analyzed signal, e/2*/* denotes the trigonometric bases and * denotes

the conjugate operator.

Although the frequency spectrum obtained by the inner product with frequency-orthogonal bases can effectively reveal the
frequency domain information of the vibration signal, it leaves out the time domain information and is not suitable for non-stationary
signals. To process non-stationary signals, it is necessary to obtain the energy of the signal at different times and different frequencies,
i.e., the time-frequency distribution.

The time-frequency distribution can be obtained by the inner product with time-frequency-orthogonal bases, which is formulated
as

+o0
TF(. f)= ‘ / x(Owy*(t = 1)t = [(x(0. = 0) | @

where T F(z, f) denotes the time-frequency distribution, X (¢) denotes the analyzed signal, (y/ (= 1)) Y denotes the time-frequency-
orthogonal bases. w,(t) denotes the inner product window function that has compact support in both time domain and frequency
domain.

The process of inner-product-based TFT is demonstrated in Fig. 1. The input signal x(r) and the inner product window functions
w,(t) with different frequency bands are convolved to obtain the frequency spectrum of the signal at a specific time point 7. With
the movement of the time point 7, the complete time-frequency distribution T F(z, f) is gradually obtained. Among the process,
parameter 7 and f are used to adjust the focusing area of inner product window function in time domain and frequency domain
respectively. It should be noted that the inner product window function is a complex function, so the obtained time-frequency
distribution is also complex, that is, the spectrum includes both the energy information and the phase information. In order to
separate the energy information, the complex modulo operation of the time-frequency distribution is required.

TFT methods include short-time Fourier transform (STFT), chirplet transform (CT) [39,40], and wavelet transform (WT) [41],
etc. All these methods follow the above procedure and the only difference between them is the inner product window function. STFT
constructs an inner product window function by multiplying the sine function by a time domain window. CT introduces a linear
frequency modulation factor to STFT, thereby improving the accuracy and stability of the result under variable speed conditions.
WT uses the wavelet family, which is generated by the mother wavelet through scaling and translation, as the inner product window
function, to obtain a time-frequency window that varies with frequency. WT has low time domain resolution and high frequency
domain resolution at the low frequency, and vice versa at the high frequency. The inner product window functions of the above
four TFT methods are shown in Table 2.
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Fig. 1. The process of inner-product-based TFT.

Table 2
The inner product functions of time-frequency transform, the corresponding kernel functions of the tfconv layer and trainable parameter with their limits. (N,
denotes the channel number of TFconv layer.).

Kernel Function Inner Product Function of Kernel Function of Trainable Parameter
Time-Frequency Transform TFconv Layer 0 with Its Limit
, ,L(L): ,1(#): .
STTF W, ()= —=—e 2\7/ e/ u/f[n] =¢ 2\aN ) oi2nfn, fo €10,0.5]
X \/ﬁa
o =052,
n=[=(N.—1),....,(N.— D]
Chirplet function Voaol) = vy olnl = e’i(i) e”z”[g”z*f ”], f €10,0.5],
1 e—%(i)ze—;[gﬂﬂul] =052, la] <0.1/N,
Vare n=[-(N.—=1,....(N. - D]
Morlet wavelet v = 3w (f) vl = v (;) , s €[04, 10]
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6=06,f,=02

n=[-10(N, = 1),..., 10(N, — 1)]

TFT methods can project the non-stationary signals from time domain into time-frequency domain to obtain their time-frequency
distribution. As shown in Fig. 1, the input is a simulated signal of rolling bearing with inner fault, and its time-frequency distribution
demonstrates both the vibration frequency and the dual-impulse property. Due to their powerful analytical abilities, TFT methods
play an important role in the feature extraction of mechanical fault diagnosis.

2.2. CNN

The structure of a convolutional neural network (CNN) can be roughly divided into two parts: the convolutional part and the
classification part. The convolutional part consists of a series of convolutional layers, BN layers, activation layers, and pooling layers,
while the classification part consists of several fully connected layers. The input samples usually are 1D vibration signals, so the
CNN models used for mechanical fault diagnosis are 1D accordingly.

The convolutional layer is the core part of the CNN and the process of 1D convolution is shown in Fig. 2. Each randomly initialized
convolutional kernel is convolved along the 1D input signal, and the results of multiple convolutional kernels are concatenated to
obtain the feature map. The feature map of the /th layer on the kth channel can be expressed as

I 1, 4l
hy =w, *x +b, 3)

where, x' denotes the input of the /th convolutional layer, and wi and bi denote the weight and bias of the kth kernel in the /th
convolutional layer respectively. The symbol * denotes the convolutional operator.

The BN layer normalizes inputs to a specific distribution, thereby increasing the training speed and alleviating gradient explosion
or disappearance. The output value of the kth channel in the /th BN layer can be given as

. h—
Y — 4)

k ]2+
\/(Fk £

where ﬂi and o,’( denote the channel-wise mean and variance of the input &
denominator from being zero.

!

4> and e denotes a small constant that prevents the
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Fig. 2. The process of traditional convolutional layer in CNN.

The activation layer introduces nonlinearity into CNN, thereby enabling nonlinear mapping. The output of the /th activation
layer can be denoted as

o = 7 (i) ®)

where & denotes the input of the activation layer and f denotes the nonlinear activation function, e.g. ReLU, Sigmoid.
With quite many features extracted, the pooling layer aims to compress them to reduce the model parameters while preserve
the main information. The output of the /th pooling layer can be denoted as

y = Downsample (z’ ) 6)

where y' denotes the input and Downsample denotes downsampling operation, such as maximum or average downsampling.

After the convolutional part, the raw signal has been transformed into high-dimensional features, which are flattened and further
classified in the following classification part. Finally, the Softmax function is used to obtain the probability of different categories,
and classification loss is calculated through cross-entropy, which can be given as

L(r,p) =~ Y rilogp, @

i

where i denotes the number of categories, r and p denotes the ground truth and predicted probability, respectively. The classification
loss measures the discrepancy between the true label and the prediction. With the training strategy based on backpropagation
(BP) and optimization algorithms like stochastic gradient descent (SGD), the prediction of the model could approach the true label
gradually.

3. Methodology

In this section, we introduce the structure and the kernel function of TFconv layer, the interpreting method, and the TFN with
its entire fault diagnosis procedure.

3.1. Structure of TFconvy layer

The TFT methods are physically interpretable, but they can not extract adaptive time-frequency information based on the
characteristics of the mechanical dataset. On the other hand, CNNs can automatically extract high-dimensional features from the
original samples and make accurate classifications efficiently, but the logic of CNN’s decision-making is not clear enough. To utilize
the advantages of both two strategies, we embed the TFT method into the traditional convolutional layer since they can be both
regarded as inner products, and this leads to a novel layer named the TFconv layer.

We designed the TFconv layer to simulate the physically interpretable TFT method, and the key point is to use a complex value
convolutional kernel instead of the real value kernel used in the current literature [35-37]. Considering that most CNN models use
real value variables and in order to get good compatibility, the structure of the TFconv layer is designed as Fig. 3. The TFconv layer
consists of a real part kernel and an imaginary part kernel, which convolves with the mechanical vibration signals along the length
direction to get real part features and imaginary part features, respectively. After that, the modulus of real and imaginary features
is calculated (as traditional TFT method does) to obtain the final time-frequency distribution as the output of the TFconv layer, and
each channel is processed independently in the whole process. Moreover, different from the traditional convolutional layer whose
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Fig. 3. The process of TFconv layer.

weights are randomly initialized, the weights of the real and imaginary part kernels are initialized and controlled be the kernel
function, and their relationship can be expressed as

Yo € Ca Yo real Wﬂ,imag €R
Yo real = real(yy) v
Yo,imag = imag(ulg)

where y, denotes the kernel function, yy ., and vy ., are the real part kernel and the imaginary part kernel respectively, real(-)
and imag(-) denote the operators to get the real part and the imaginary part of a complex value respectively. The control parameter
0, which adjusts the frequency property of kernel function, is treated as the trainable parameter and updated in the BP process. The
kernel function of the TFconv layer is equivalent to the inner product window function in TFT, and the output of the kth channel
of the TFconv layer can be denoted as

— sk
hk,real = WG,real * X

— ok
hk,imag - lIl@,ima\g * X (9)

— 2 2
hk - V hk,real + hk,imag

where k denotes the kth channel of the convolutional kernel, x denotes the input of the TFconv layer, § denotes the trainable control
parameter of the kernel function, h,., and h;,,, denote the real and imaginary feature map respectively, and s denotes the final
output (i.e., time-frequency distribution).

Compared to traditional convolutional layers, the proposed TFconv layer has three novel aspects as follows:

1. Real-imaginary mechanism: TFconv layer has two convolutional processes of the real part kernel and imaginary part kernel,
and their outputs are merged through modulo operation.

2. Kernel function: The weight of the convolutional kernel of TFconv layer is determined by the specific kernel function, not
randomly initialized.

3. Trainable parameters: The trainable parameters of TFconv layer are the control parameters 6 of the kernel function
(e.g., frequency factor f in STFT kernel), instead of the convolutional weights.

Since the trainable parameters of the TFconv layer are different from those of the traditional convolutional layer, the BP process
of the TFconv layer is different accordingly. In the BP process, the TFconv layer calculates the gradient of trainable parameters and
updates them during each training step, which can be expressed as

T oh \ Oyprea 00 Wpimag 00
6 « optimizer (0, 65, 7)

oL oh  OWpreal oh  Opimag
8y = = L
0 ( (10)

where 6 denotes the trainable parameters of the kernel function, 6, denotes the gradient of 6, 0 denotes the partial derivative
operator, L denotes the classification loss, /1 denotes the output of the TFconv layer, v, ., and v, ;n,, denote the weights of the
real and imaginary parts, n denotes the leraning rate of the optimizer. After the gradient is obtained by the chain rule, the trainable
parameters could be updated by optimization algorithms like SGD, Adam or RMSprop.
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Fig. 4. The time-domain and frequency-domain diagrams of three kernel functions of TFconv layer. (a) STTF. (b) Chirplet function. (c) Morlet wavelet.

3.2. Kernel function of TFconv layer

The kernel function of the TFconv layer derives from the inner product window function of TFT through necessary discretization
and modification, which is the key step to embed the TFT method into the TFconv layer. With the TFT method embedded, physical
constraints of TFT are also introduced in the TFconv layer, that is, there is a certain limit on the trainable parameters of the kernel
function. Taking STFT as an example, due to the nyquist sampling theorem, the meaningful normalized frequency is [0, 0.5], so the
frequency factor f of the corresponding kernel function should be limited to [0, 0.5] as well.

According to the above analysis, three typical TFT methods (i.e., STFT, CT, and Morlet WT) are considered to formulate TFconv
kernel functions. The inner product window functions of TFT, the corresponding kernel functions of the TFconv layer and trainable
parameters with their limits are shown in Table 2. Different from the short-time trigonometric function (STTF) and chirplet function,
the morlet wavelet kernel can stretch and contract in the time domain by scale factor s. To avoid time-domain truncation, the kernel
length of the morlet wavelet kernel is designed to be much longer than that of the STTF and chirplet kernel.

To illustrate the properties of the above three kernel functions, the time-domain and frequency-domain diagrams of them are
shown in Fig. 4, and all the kernel functions can be regarded as bandpass filters. STTF kernel function has a fixed frequency
bandwidth, and the center frequency is adjusted by the frequency factor f. Chirplet kernel function introduces a linear frequency
modulation factor « to the STTF kernel function and can dynamically change its filtering bandwidth. Morlet wavelet kernel function
can scale their mother wavelet by scaling factor s to adjust their frequency properties, and with the increase of scaling factor, it has
a higher center frequency and wider bandwidth.

3.3. Interpretability of TFconv layer

With the TFT method embedded, the TFconv layer can not only extract time-frequency information from the mechanical vibration
signals, but also become explainable through the interpreting method proposed in this subsection. The interpreting method is
to perform the frequency response analysis on the trained TFconv layer to obtain its amplitude—frequency response (FR), which
indicates the attention that CNN paid to different frequencies. The frequencies with higher attention could easily pass through the
TFconv layer and are deeply involved in the prediction-making process and responsible for the results of CNN.

The frequency response analysis of the convolutional layer derives from the filter theory in the signal processing field. The
convolutional process in the convolutional layer is exactly equivalent to the filtering process of the finite impulse response (FIR)
filter [42]. Therefore, the convolutional kernel can be regarded as a FIR filter, and the input is the mechanical vibration signals to
be filtered. In the frequency response analysis, the convolutional kernel is processed by fast Fourier transform (FFT) to obtain the
FR of the convolutional layer [43]. Considering multiple channels contained in the convolutional layer, we calculate the channel-
wise amplitude—frequency response (C-FR) first, and average them to obtain the overall amplitude—frequency response (O-FR). The
calculation process could be denoted as

N _2xfn
Z w;[nle™ N
n=0

H,(f) = |FFT(w))| =

n an
() == 3 HA)

where, w; denotes the convolutional kernel of the ith channel, H;(f) and H(f) denote the C-FR of the ith channel and the O-FR,
respectively. Although the above frequency response analysis is based on the traditional convolutional layer, it is also applicable
to the TFconv layer because the real part kernel and imaginary part kernel in the TFconv layer are equivalent to a complex value
kernel.
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Table 3
The Architecture of the analyzed TFN.
Part No. Unit Basic Unit Output Size
TFconv - input 1%1024
1 TFconv(n, @N*1) n.*1024
Backbone 2 Conv(16@15*1)-BN-ReLU 16*1010
3 Conv(32@3*1)-BN-ReLU-MaxPool(2) 32*504
4 Conv(64@3*1)-BN-ReLU 64*502
5 Conv(128@3*1)-BN-ReLU-AdaptivePool(4) 128*4
6 Flatten 512
7 Dense(256)-ReLU-Dense(64)-ReLU-Dense(np) n,

Both the traditional convolutional layer and the TFconv layer can be conducted by frequency response analysis, yet there still
exist some differences in their results. The C-FR of the traditional convolutional layer, shown in Fig. 5(a), presents a random
distribution, which is difficult to identify the focusing frequency area (i.e., the passband frequency of the FIR filter). While the
TFconv layer, shown in Fig. 5(b) and (c), is well controlled by the kernel function and has a clear frequency preference. The O-FR
of the traditional convolutional layer and TFconv layer are shown in Fig. 5(d). Compared with the traditional convolutional layer,
the focusing frequency area of the TFconv layer can be identified more easily and used for interpreting the frequency foundation
of CNN models.

Moreover, it is necessary to further elaborate on the interpreting logic of the TFconv layer. TFconv layer can be regarded as
a series of trainable bandpass FIR filters, without considering the modulo operation. When the TFconv layer is combined with
a backbone CNN as a preprocessing layer, the TFconv layer becomes the data portal of the backbone CNN. This means that
only the frequency with amplitude in the amplitude-frequency response (O-FR) can pass the TFconv layer and be used by the
subsequent backbone CNN for fault diagnosis tasks. Therefore, we claim that our TFN models have interpretability because the
overall amplitude—frequency response (O-FR) of the TFconv layer could be used to explain the attention that the CNN model paid to
different frequencies. To validate this, we propose a hypothesis that, the information frequency bands (which carry most information
of the mechanical dataset) are crucial for fault diagnosis, and TFN models will pay more attention (i.e., amplitude peaks in O-FR) to
these information frequency bands during the training process to achieve better diagnostic performance. We will verify the above
hypothesis in the following experiment section, and if the O-FRs of trained TFN models have a good correspondence with the
information frequency bands of the dataset frequency spectrum, the correctness of the interpreting logic of proposed TFN models
would be effectively confirmed.

3.4. Fault diagnosis using TEN

The interpretable TFconv layer is used as the preprocessing layer to combine with a backbone CNN, and the resulting novel
network is named the time-frequency network (TFN). With TFN, we can extract fault-related time-frequency information from
raw vibration signals and diagnose the fault states of mechanical equipment efficiently. The entire framework of applying TFN
to intelligent mechanical fault diagnosis is summarized in Fig. 6.

Firstly, the vibration signals are collected by the accelerometers installed on the mechanical equipment. Secondly, the vibration
signal is truncated with a sliding window to generate a series of samples as the input of TFN. Thirdly, the kernel function is
formulated from TFT methods and embedded into the TFconv layer. Then, an existing CNN model is selected as the backbone,
and the TFconv layer is combined as the preprocessing layer with the backbone to obtain TFN. After that, the obtained TFN is
trained and verified by training samples and test samples in fault diagnosis tasks. Finally, the interpreting method is conducted to
reveal the focusing frequency area of TFN.

In order to verify the effectiveness of the TFconv layer, a relatively shallow CNN is selected as the backbone, and the architecture
of the obtained TEN is shown in Table 3. n., N and n, are the channel number of the preprocessing layer, the length of the TFconv
layer, and the number of categories for classification, respectively. n, and N are determined in the design process of the TFconv
layer, and n, is determined by the diagnostic task.
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Fig. 7. CWRU bearing experimental system.

4. Experiment

In this section, three experimental datasets are used to verify the diagnostic performance and the interpretability of TFNs. In
the diagnostic performance part, considering the importance of the channel numbers, we compare TFN models with other models
mentioned in Table 1 under different channel numbers. In the interpretability part, the consistency between the frequency spectrum
of the dataset and the O-FRs of trained TFconv layers with different kernels are analyzed to verify the interpretability of TFNs.

4.1. CWRU public bearing dataset

In order to better spread our work, we choose this open-source dataset as a benchmark to test the diagnostic performance of
TFNs. The CWRU bearing dataset [44], as shown in Fig. 7, is one of the most popular open-source datasets for mechanical fault
diagnosis. The accelerometer is installed on the motor casing of the drive end, and the vibration signals are collected under four
loading conditions (load 0-3 HP) at two sampling frequencies of 12 kHz and 48 kHz.

In addition to normal condition (N), three different bearing fault types are contained in this dataset: inner raceway fault (I),
rolling element fault (B), and outer raceway fault (O). For each fault type, different fault sizes were considered respectively,
i.e., 0.007, 0.014 and 0.021 inches. Therefore, this dataset has nine fault states and a normal state, ten categories in total. The
fault diagnosis of CWRU rolling bearing can be regarded as a 10-class classification.

The diagnostic difficulty of the CWRU dataset is relatively low, and the diagnostic accuracy of 12 kHz signals of most models
is close to 100%, which is hard to distinguish the diagnostic performance of different models. Therefore, 48 kHz vibration signals
are chosen for the following diagnosis task for its higher diagnostic difficulty. The vibration signal is truncated into samples at the
length of 1024 and each state has 450 samples, for a total of 4500 samples. 60% of samples in each category are used for training,
and the remaining samples are used for testing. The loss function of classification is cross-entropy, the training optimizer is Adam,
the momentum is set to 0.9, the initial learning rate is 0.001, the decay ratio of the learning rate is 0.99 per epoch, and the training
epoch is 50. Each model is repeated 10 times to eliminate randomness and verify the stability.
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Fig. 8. Test accuracy on the CWRU bearing dataset.

To test the diagnostic performance of the TFconv layer, this experiment contains three types of models. 1) Backbone models: the
backbone CNN (denoted as Backbone-CNN), the backbone CNN with traditional randomly-initialized kernel convolutional layer
as the preprocessing layer (denoted as Random-CNN). 2) Contrast models: SincNet [36], WKN with morlet kernel and laplace
kernel(denoted as WKN-Morlet and WKN-Laplace) [35], W-CNN [37]. 3) TFN models: TFNs with STTF, chirplet function, and morlet
wavelet function as the kernel function (denoted as TFN-STTF, TFN-Chirplet, and TFN-Morlet, respectively). Except for the backbone
CNN, each type of other models contains 4 different channel numbers of preprocessing layer: 16, 32, 64 and 128.

The fault diagnosis results on the CWRU bearing dataset are shown in Fig. 8, and we can draw the following conclusions.

1. The diagnostic accuracies of Backbone-CNN and Random-CNN are the worst. SincNet, WKN-Morlet, WKN-Laplace, and W-
CNN have made great improvements compared to Backbone-CNN. Furthermore, TFN-STTF, TFN-Chirplet and TFN-Morlet
reach the best diagnostic performance overall, and their diagnostic accuracy under 64 or 128 channel numbers is close to
100%, demonstrating the effectiveness of TFN in fault diagnosis. The TFconv layer of TFN can transform the raw vibration
signal into fault-related time-frequency features, leading to the distinguished diagnostic performance of TFNs.

2. The more channels generally led to the higher diagnostic accuracy and this phenomenon is more obvious in TFN models. The
diagnostic accuracy of TFN models and other models are similar when the channel number is 16, but with the increase of the
channel number, the diagnostic accuracies of TFN models are significantly higher than that of other methods. TFconv layer
with more channels could extract more time-frequency information and lead to higher diagnostic accuracy. However, the
diagnostic accuracy of TFN with 64 channels is similar to that with 128 channels. This indicates that when the TFconv layer
has enough channels to extract time-frequency information, increasing the number of channels does not bring a corresponding
increase in diagnostic accuracy.

3. As for the kernel functions of TFN, all three kernel functions have similar diagnostic performance, and the STTF kernel is
slightly better than the chirplet kernel and morlet kernel in general.

After introducing the diagnostic performance of TFN, here comes the interpretability analysis part. To have a suitable dataset
frequency spectrum, the vibration signals at 12 kHz sampling frequency under 3 HP loading condition in the CWRU dataset are
used as the input samples, and TFNs with different kernel functions are trained by them. In order to obtain a clear interpretable
observation, the channel numbers of preprocessing layer are set to 8 and other experimental settings are the same as those in the
previous diagnostic experiments.

According to frequency response analysis shown in Eq. (11), the O-FR of the preprocessing layer of different well-trained models
could be obtained. The frequency spectrum of CWRU dataset and the O-FR results are shown in Fig. 9. As shown in Fig. 9(a),
the frequency amplitude of the dataset mainly exists in four information frequency bands, i.e., bands 1-2-3-4, which carry most
information of the dataset and have been marked out by different colors. These information bands are responsible for fault diagnosis
and a good CNN model should focus on them to achieve a satisfying diagnostic accuracy. From the O-FR results shown in Fig. 9(b)—(i),
the following conclusions could be obtained.

1. The O-FRs of trained Backbone-CNN and Random-CNN have an amplitude increase only at band 2 or band 4, indicating that
the information is insufficiently extracted for fault diagnosis.

2. The O-FRs of contrast models (i.e., SincNet, WKN-Morlet and W-CNN) are shown in Fig. 9(d)—(f). The O-FRs of SincNet and
WKN-Morlet do not change much after training, and their results do not correspond exactly to the frequency spectrum of the
CWRU dataset shown in Fig. 9(a). Unlike the previous two methods, W-CNN is only initialized by kernel functions rather than
parameterized, so its O-FR changes significantly and matches well with the dataset frequency spectrum. However, because it
is not constrained by kernel function during training and is only a real kernel, its O-FR is relatively chaotic and there exists a
redundant peak in the high-frequency area, so W-CNN is not a very ideal way to explain what is the fault-related frequencies
in model’s view.
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Fig. 9. Frequency spectrum of the CWRU bearing dataset and O-FRs of different models. (a) Frequency spectrum of CWRU dataset. (b) O-FR of the first
convolutional layer of Backbone-CNN. (c) O-FR of the first convolutional layer of Random-CNN. (d) O-FR of SincNet. (e) O-FR of WKN-Morlet. (f) O-FR of
W-CNN. (g) O-FR of the TFconv layer of TFN-STTF. (h) O-FR of the TFconv layer of TFN-Chirplet. (i) O-FR of the TFconv layer of TFN-Morlet.

3. The O-FR of trained TFN-STTF has amplitude peaks at all the information frequency bands. It means that TFN-STTF pays
correct attention to these information bands, which is consistent with its outstanding performance in fault diagnosis. However,
since the parameter f of the STTF kernel function can only change the centering frequency, not the bandwidth, there still
exist some amplitude peaks outside the information bands, i.e., two redundant peaks marked out in Fig. 9(g).

. The O-FR of trained TFN-Chirplet has amplitude peaks within all the information frequency bands as well. However, different
from the STTF kernel function, the chirplet kernel function has an additional linear frequency modulation factor « to change
its filtering bandwidth, and it would increase its bandwidth to search a wider frequency band when this channel cannot get
any useful information, so there exists no amplitude peak outside the information bands in the OF-R of TFN-Chirplet. The
O-FR of TFN-Chirplet is completely consistent with the frequency spectrum of the CWRU dataset, so TFN-Chirplet achieves
the best physical interpretability than other models.

. The O-FR of TFN-Morlet changes little after training, where only one amplitude peak (corresponding to band 3) can be
barely identified. Although the adaptive frequency bandwidth of the wavelet kernel function can help to extract fault-related
information, it also blurs the focusing frequency bands and thus prevents them from being identified. This leads to the inferior
interpretability of TFN-Morlet compared with TFN-STTF and TFN-Chirplet.

By analyzing the O-FR of the trained TFconv layer, we confirm the excellent performance of the proposed TFNs in terms of
interpretability. The O-FR of trained TFN-Chirplet is well matched with the frequency spectrum of the CWRU dataset, verifying our
hypothesis that the O-FR of TFconv layer reflects the attention of models to different frequencies and models tend to pay more
attention to fault-related frequencies after the training process.

4.2. Planetary gearbox dataset

As shown in Fig. 10(a), this planetary gearbox system includes an electric motor, a transmission shaft, a torque transducer, a
planetary gearbox, a magnetic powder brake and a series of sensors. The vibration signals are collected by the accelerometer located
at the shell of the planetary gearbox and transmitted to the signal acquisition card at the sampling frequency of 10.2 kHz.
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Fig. 10. The planetary gearbox system and the defective components. (a) The planetary gearbox system. (b) Tooth fracture of the ring gear. (c) Tooth fracture
of the sun wheel. (d) Tooth fracture of the planetary gear. (e) Outer race pitting of the rolling bearing.

Table 4
The working conditions of gearbox system.
Label Failure Component Training/Testing Sample
N None 264/176
S Ring Gear 264/176
D Ring Gear and Sun Wheel 264/176
T Ring Gear, Sun Wheel and Planetary Gear 264/176
C Ring Gear and Rolling Bearing 264/176
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Fig. 11. Test accuracy on the planetary gearbox dataset.

Four types of component failures are considered in this dataset, including tooth fractures of three different gears and the outer
race pitting of the rolling bearing as shown in Fig. 10(b)-(e). Based on these faults, the experiments are conducted under five health
conditions listed in Table 4, specifically normal state (N), single-point fault (S), double-point fault (D), three-point fault (T) and
compound fault (C). The fault diagnosis of the planetary gearbox can be regarded as a 5-class classification task.

In data preparation, the raw vibration signal is truncated without overlap through a sliding window to obtain input samples.
Each category contains 440 samples, and the length of each sample is set to 1024. After that, 60% of the samples are randomly
divided as the training set, and the rest samples are used as the test set. In addition, Gaussian white noise with signal-to-noise ratio
(SNR) of 0 is added to the original signal to increase the difficulty of diagnosis. The rest of the experimental settings are consistent
with that of the diagnostic experiment on the CWRU dataset.

The diagnostic results are shown in Fig. 11. The diagnostic difficulty of this dataset is relatively low, and the diagnostic
performance gap of different models is not as obvious as in the previous CWRU diagnostic experiment. The diagnostic accuracy
of Backbone-CNN is 97.8%, and Random-TFN performs better than the backbone CNN. SincNet, WKN-Morlet, WKN-Laplace, and
W-CNN perform slightly better than the previous two models. TFN-STTF, TFN-Chirplet and TFN-Morlet achieve the best overall
diagnostic performance, demonstrating the effectiveness of the proposed method. Furthermore, TFNs with 32 channels perform much
better than that with 16 channels, but TFNs with more channels (i.e., 64, 128) do not have a corresponding increase in accuracy. It
indicates that 32 channels are enough for TFN to extract sufficient Time-Frequency information on this planetary gearbox dataset.
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Fig. 12. Frequency spectrum of the planetary gearbox dataset and O-FRs of different models. (a) Frequency spectrum. (b) O-FR of the TFconv layer of TFN-STTF.
(c) O-FR of the TFconv layer of TFN-Chirplet.
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Fig. 13. The configuration of aerospace bearing experimental system. (a) Structure of the flywheel. (b) Schematic of the flywheel vibration acquisition process.

As for the interpretability analysis on the planetary gearbox dataset, considering the inferior interpretability performance of
backbone models and TFN-Morlet, we only present the interpretability results of TEN-STTF and TFN-Chirplet for brevity. The channel
numbers of the preprocessing layer are set to 8 and other experimental settings are the same as those in the previous diagnostic
experiment on the planetary gearbox dataset. The frequency spectrum of the planetary gearbox dataset and the O-FRs of TFN-STTF
and TFN-Morlet are shown in Fig. 12.

As marked in Fig. 12(a), the frequency amplitude mainly exists in five information frequency bands that contain most information
of the planetary gearbox dataset, i.e., bands 1-2-3-4-5. As shown in Fig. 12(b)-(c), both the O-FRs of trained TFN-STTF and trained
TFN-Chirplet have amplitude peaks at these five information frequency bands, showing that TFN-STTF and TFN-Chirplet pay correct
attention to the information frequency bands of planetary gearbox dataset. However, the chirplet kernel function has an additional
linear frequency modulation factor a for adjusting its filtering bandwidth compared to the STTF kernel function, so the O-FR of
TFN-STTF has two amplitude peaks outside the information frequency band (one is nearly 0.1 in frequency and the other is nearly
0.45 in frequency), while the O-FR of TFN-Chirplet has no unrelated amplitude peaks and is more consistent with the frequency
spectrum of the planetary gearbox dataset. In conclusion, this phenomenon in the planetary gearbox dataset is the same as that of
the CWRU bearing dataset, demonstrating the outstanding interpretability of TFN-Chirplet to reveal the focusing frequency area of
CNN models.

4.3. Aerospace bearing dataset

The former two datasets are collected in laboratory scenarios, while this aerospace bearing dataset is derived from the industrial
scenario. As shown in Fig. 13, the aerospace bearing is the core component of the flywheel test rig, which consists of motor
components, an aerospace bearing, a flywheel assembly, a shell, and a mounting base as shown in Fig. 13(a). The flywheel is driven
by an electric motor and then puts the aerospace bearing to work. The data acquisition equipment is shown in Fig. 13(b), including
an accelerometer, power supply, a signal acquisition and analysis system. The flywheel is fixed on an upright bracket, where the
acceleration sensor collects the three-way vibration signals of the aerospace bearing at the sampling frequency of 25.6 kHz.

The aerospace bearing dataset has five types of health conditions: normal state (N), leading surface scratching (S), cage fault (C),
ball fault (B), and inner ring fault (I). For each condition, the radial vibration signal is truncated into samples, and each category
contains 1000 samples, for a total of 5000 samples. Then 60% of the samples in each category are used for training, and the remaining
samples are used for testing. The fault diagnosis of the aerospace bearing dataset can be regarded as a 5-class classification task.
Like the processing of the planetary gearbox dataset, the Gaussian noise of SNR = 0 is added to the original signal to increase the
difficulty of diagnosis. The rest settings for this experiment are consistent with that of the previous planetary gearbox experiment.

The experimental results are shown in Fig. 14. The performance of the Backbone CNN (87.3%) is the worst and Random-TFN
(around 93%) performs much better. This may be caused by the increased model depth of the newly added convolutional layer, even
it is randomly initialized and updated through BP process. The contrast type models (including SincNet, WKN-Morlet, WKN-Laplace,
W-CNN) is close or slightly better than Random-CNN, and the diagnostic accuracy of SincNet with 128 channels is 96.7%. As for
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Fig. 14. Test accuracy on the aerospace bearing dataset.
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Fig. 15. Frequency spectrum of the aerospace bearing dataset and O-FRs of different models. (a) Frequency spectrum. (b) O-FR of the TFconv layer of TFN-STTF.
(c) O-FR of the TFconv layer of TFN-Chirplet.

TFNs, TFN-STTF, TEN-Chirplet, and TFN-Morlet have best performances on diagnostic accuracy, where STTF-TFN with 128 channels
achieves the highest average accuracy of 98.3%. TFconv layer with more channels could extract more time-frequency information
and lead to a higher diagnostic accuracy despite the expense of training time. In conclusion, proposed TFNs have a much better
performance than both backbone models and contrast models, and the diagnostic accuracy of TFNs increase significantly with the
increase of the number of channels, demonstrating the importance of the number of channels.

As for the interpretability analysis, the process on the aerospace bearing dataset is the same as the previous two datasets.
Specifically, TFN-STTF and TFN-Morlet with 8 preprocessing layer channels are chosen to be trained on the aerospace bearing
dataset, and the experiment settings are the same as the diagnostic experiment before. The frequency spectrum of the aerospace
bearing dataset and the O-FRs of TFN-STTF and TFN-Morlet are shown in Fig. 15.

As marked in Fig. 15(a), the frequency amplitude mainly exists in five information frequency bands that contain most information
of aerospace bearing dataset, i.e., band 1-2-3-4-5. As shown in Fig. 15(b)—(c), the results are consistent with the interpretability
analysis of the previous two datasets. Both two models pay correct attention to the information frequency bands of the aerospace
bearing dataset, but the O-FR of TFN-STTF has one amplitude peak (nearly 0.35 in frequency) outside the information frequency
bands, while that of TFN-Chirplet is pretty flat due to its capability to adjust filtering bandwidth. In conclusion, the O-FR of trained
TFN-Chirplet has a good correspondence with the frequency spectrum of aerospace bearing dataset, demonstrating the outstanding
interpretability of TFN-Chirplet again.

Based on the above experiments of diagnostic performance and interpretability, we can make an overall evaluation of these
three kernel functions. In conclusion, although the morlet kernel has good diagnostic performance, it performs relatively poorly
in interpretability. Therefore, we recommend using the STTF kernel or chirplet kernel in practice, where the STTF kernel has the
advantage in diagnostic accuracy while the chirplet kernel is more suitable for interpretability.

5. Discussion

To further analyze the properties of TFN, the comparison with contrast models, the analysis of the training process and training
time, the few-shot analysis, and the generalizability analysis are conducted on the CWRU open-source dataset. The comparison part
shows the essential differences between TFN and contrast models and explains the reason for the superior diagnostic performance
of TFNs. The analysis of the training process and training time discusses the advantage of TFN in convergence speed in the training
process and the time cost of TFN. The few-shot analysis explores the relationship between the diagnostic accuracy of TFN and the
number of training samples, demonstrating the excellent few-shot ability of TFN. The generalizability analysis proves the feasibility
of generalizing the TFconv layer to other CNN models.
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5.1. Comparison with contrast models

The motivation of contrast models (i.e., SincNet [36], WKN [35], and W-CNN [37]) shown in Table 1 is to parameterize or
initialize traditional convolutional kernel by a specific kernel function, but these models only consider real value convolutional
kernels and are equivalent to a series of bandpass FIR filters, whose outputs are filtered sub-signals. On the contrary, the TFconv
layer uses real-imaginary mechanism to simulate complex value convolutional kernels, thus the output of the TFconv layer is
time-frequency distribution (the energy distribution of a signal in the time-frequency domain), which is the same as traditional
time-frequency transform methods do, except the TFconv layer is trainable and adaptive based on the specific dataset.

We demonstrate the differences between TFNs and contrast models by the formula derivation and the output presentation of
these models. As for the formula derivation part, we would show the difference between the output of “complex kernel” (used
by TFNs) and that of “real kernel only” (used by contrast models). We take STFT, a basic time-frequency transform method, for
example. Given an input signal x(), the process of “complex kernel” could be denoted as

X(r,0) = / x(Ow(t — )e”" dt (12)

where, X(z,w) is the output of the process of “complex kernel”, = and w are time shift parameter and frequency shift parameter,
respectively. w(¢) is the window function of STFT, whose length is denoted as T'. The process of “real kernel only” could be denoted
as

X/(T,\w) = /x(t)w(t —7)coswt dt (13)
According to Fourier expansion, x(f)w(t — r) could be expanded as
x(Ow(t - 7) = a‘);) + 3 a,(0)sin [nogt + ¢, (7)) (14)
n=1

where, a,(r) denotes the amplitude of the input signal x(¢) at time = and frequency nw,, and w, = 2z/ T is the basic frequency.
Therefore, bringing Eq. (14) back to Eq. (12) with modulus operator and considering the orthogonality of the sine function, we
could get

IX(T,w)l = ‘/x(t)w(t _ T)e—imt dl‘

= '/ { aoér) + ,Z{ a,(v) sin [newgt + ¢, (0)] } e

= '% + [a,(2) sin (¢, (D)) + a4 (7) cos (¢, (7)) - z]‘

(15)

- Lo

2
Above is the output of the process of “complex kernel”, and g,
w, i.e., the time-frequency distribution.
To get the output of the process of “real kernel only”, it is the same to bring Eq. (14) back to Eq. (13) and we will get

(7) is the amplitude of the input signal x(t) at time = and frequency

@

X(z,0) = / x(Ow(t — ) cos(wt)dt

/ { aoéf) + Z a,(7) sin [nogt + ¢,(7)] } cos(wt)dt a6

n=1

= Lo, sing, (0

The output of “real kernel only” has two parts: the former part a,(7) is time-frequency distribution and the later part sin ¢, (z) is the
phrase information subject to time 7 and frequency w. This is the reason that the output of “real kernel only” is filtered sub-signals,
not the time-frequency distribution as processed by the “complex kernel”.

After the formula derivation part, we use the output presentation to further introduce the differences between TFNs and contrast
models (i.e., SincNet, WKN-Morlet, WKN-Laplace, W-CNN). For all the models, the channel numbers of the preprocessing layer
are set to 64, and the experiment settings are the same as the interpretability analysis on the CWRU dataset. The illustration of
the processing process of different models is shown in Fig. 16, and the simulated input signal with its time-frequency distribution
(processed by STFT) is shown in the left column of the figure. The 16th kernel of different trained preprocessing layers are shown
in the middle column to show the model differences in kernel shape. The preprocessing layer outputs of different trained models
are shown in the right column to show the model differences in output.

As we can see from the middle column, the kernel of Rondom-CNN is randomly initialized which is the way that the traditional
convolutional layer goes, and the contrast models use real value kernels and parameterize (or initialize) them to a specific frequency
which are equivalent to FIR filters, while TFNs (i.e., TFN-STTF, TFN-Chirplet, and TFN-Morlet) use complex value kernels by
parameterizing them, which are equivalent to the time-frequency transform (TFT).
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Fig. 16. The illustation of the processing process of different models.

As we can see from the right column, the output of Rondom-CNN is hard to catch any useful information. With kernel functions
embedded, the outputs of contrast models have a clear correspondence to the time-frequency distribution of the input signal,
meaning these models can extract time-frequency information to some extent. However, these models only consider real value
kernels and their outputs contain the phase information of the input signal as explained in Eq. (16), making their ouputs blurry
and still obviously different from the time-frequency distribution of the input signal processed by STFT. On the contrary, TFNs use
real-imaginary mechanism to take complex value kernels into consideration, and the outputs of TFNs are exactly corresponding
to the time-frequency distribution of the input signal, except for some distortions on some specific frequency bands. It is easy to
conclude that these distortions are caused by the training process of the TFconv layers. As discussed in interpretability analysis
(Fig. 9), TFNs will change their frequency response (FR) during the training process, and these specific frequency bands within
distortions of TFN-STTF and TFN-Chirplet are exactly corresponding to the fault-related frequency bands shown in the frequency
spectrum of CWRU dataset (left bottom in Fig. 16), which is also consistent with the phenomenon we discussed in the interpretability
analysis on the CWRU dataset before.

In conclusion, the outputs of contrast models are a series of filtered sub-signals, that have a certain correspondence to the time-
frequency distribution of the input signal but still have distinct differences becaused the phase information is contained. The outputs
of TFNs are the time-frequency distribution like the result of STFT, but with more focus on the fault-related frequency bands of the
training dataset, and this explains the superior diagnostic performance of TFNs becasuse fault-related features are extracted by the
TFconv layer to facilitate the following fault classification.

5.2. Training process and traing time

To further analyze our TFNs models, we compare the convergence speed of different models on the CWRU dataset. Backbone
models (i.e., Backbone-CNN and Rondom-CNN), contrast models (i.e., SincNet, WKN-Morlet, WKN-Laplace, and W-CNN) and TFNs
(i.e., TEN-STTF, TFN-Chirplet, and TFN-Morlet) are chosen for comparison. The channel numbers of the preprocessing layer are all
set to 64, the training epoch is set to 80 to get complete records, and the rest experimental settings are the same as the diagnostic
experiment on the CWRU dataset.
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Fig. 17. The training process of different models on the CWRU dataset.

The training process of different models is shown in Fig. 17, and Backbone-CNN gets the worst performance. Random-CNN,
W-CNN, and WKN-Laplace perform much better than Backbone-CNN. SincNet and WKN-Morlet belong to the second tier, and they
perform slightly better than the previous three models. TFNs have a fast convergence speed than all other models, and TFN-Morlet
performs best among them. The convergence speed is consistent with the diagnostic performance shown in Fig. 8, and the fast
convergence speed of TFNs is attributed to their ability to extract time-frequency features.

Parameterizing convolutional kernels can significantly improve the diagnostic ability of CNN models, but the diagnostic
improvement is at the cost of training time, which is barely discussed in the current literature [35-37]. To quantify the time cost of
parameterizing convolutional kernel, we recorded the training time of backbone models, contrast models and TFNs with different
channel numbers in the diagnostic experiment on CWRU dataset, which is shown in Fig. 18.

1. The training time of Backbone-CNN and Rondom-CNN is nearly 22 seconds per training. W-CNN just initializes the
convolutional kernel, not parameterizes, so the training time of W-CNN is nearly 30 seconds per training, which is close
to Backbone models.

2. SincNet, WKN-Morlet and WKN-Laplace parameterize the real value convolutional kernels, so their training times increase
significantly than Backbone-CNN and that with 128 channels are close to 350 seconds, which is almost 16 times more than
backbone models. Within these three models, the training times of WKN-Morlet and WKN-Laplace are more than SincNet due
to their longer kernel length shown in Table 2.

3. TEN-STTF, TFN-Chirplet and TFN-Morlet parameterize the complex value convolutional kernels, and their training times with
128 channels are close to 400 seconds, which is almost 18 times more than Backbone models. Within these three models,
TFN-Chirplet requires more training time than TFN-STTF because chirplet kernel function has an additional control parameter
(i.e., the linear frequency modulation factor a) to be trained, and TFN-Morlet requires the most training time because morlet
kernel function has the longest kernel length than other kernel functions.

4. As the number of channels increases, the training time of these models that parameterize convolutional kernel increases
significantly, so the channel number of such models needs to be carefully considered to strike a balance between diagnostic
accuracy and training time.

In conclusion, parameterizing convolutional kernel is extremely time-consuming, and such models require numerous training
time than backbone models, while parameterizing complex value kernel (used by TFNs) is only slightly more time-consuming than
parameterizing real value kernel (used by contrast models [35,36]), which makes our TFNs still competitive compared to contrast
models.

5.3. Few-shot analysis

To further analyze the few-shot ability of our TFN models, we conduct a few-shot experiment on CWRU dataset. The channel
numbers of the preprocessing layer are all set to 64, and the experimental settings are the same as the diagnostic performance
experiment on CWRU dataset where each class has 450 samples, for a total of 4500 samples. To test the few-shot ability of TFNs,
we pick a certain number (i.e., 5, 10, 20, 50, 100, 150, 200, 250, and 300) of samples in each class as training data, and the
remaining samples are used for testing. Considering the difference in the number of training samples, the number of training epochs

17



Q. Chen et al. Mechanical Systems and Signal Processing 207 (2024) 110952

The Channel Number of Preprocessing Layer
- 16 - 32 - 64 == (28

!_ ...... rézf\&]utkrer?el' B _l I complex value kernel 500 |

Ly | i ! |

| 408 . |

@ 400 7 I | 1.089 : ;

5 Y RN LS > 343 |
E . v 35 ————— 1.~ |

= 3007 | .-~ . | I

£ 1432 2~ | X :

£ 200 - i — ;

Backbone Random 5 SincNet WKN WKN | W-CNN | TFN TFN TFN
-CNN -CNN I -Morlet -Laplace o 1811‘17‘ L ‘-gmi.rpﬁt_ . _-Mﬂlc_t_ .|
Model

Fig. 18. The training time of different models with different preprocessing layer channels on the CWRU dataset.

Model
mmm Backbone-CNN mmm Random-CNN = SincNet s WKN-Morlet mmm  WKN-Laplace
- W-CNN mmm TEN-STTF TFN-Chirplet mms TFN-Morlet
100
95 1 !
90
: 85 1
g 80 ) §
E 75 s
< 70 H
=65
60 -
> Latll
50 T T
5 10 20 50 100 150 200 250 300

The Number of Training Samples

Fig. 19. The diagnostic accuracy of different models with different numbers of training samples on the CWRU dataset.

changes accordingly to ensure that the number of training batches is as equal as possible but no more than 300, which is designed
as follows

Nepoen = min <w, 300) 17)
N, training_sample

where, Ny, denotes the number of training epochs and Nyining sample denotes the number of training samples each class.

The result of the few-shot experiment is shown in Fig. 19. When the number of training samples is 5, the diagnostic accuracies
of the models are all below 80%. But our TFNs (close to 75%) perform more outstandingly than other models (below 65%), and the
gap in diagnostic accuracy exceeds 10%. When the number of training samples increases to 50, the diagnostic accuracy of TFNs is
close to 100%, and the diagnostic accuracy gap between TFNs and other models has been narrowed to about 5%. After that, with
the increase in the number of training samples, the performance of TFNs remains at about 100%, and the diagnostic accuracy of
other models gradually increases, and finally, the accuracy gap is about 1~2%. In conclusion, our proposed TFNs have much better
performances than other models in few-shot diagnostic tasks, and these outstanding performances are due to their ability to extract
time-frequency features demonstrated in Fig. 17.

In addition, we also perform the few-shot analysis on the other two datasets. The experimental results are included in
the supplementary materials, where the diagnostic accuracies of TFNs are also much higher than contrast models, effectively
demonstrating the superiority of our model in few-shot scenarios.

5.4. Generalizability

In order to verify the generalizability of the TFconv layer, three typical CNNs with different depths are selected as the backbone
models to obtain different TFNs. The vibration signal under 3 HP load condition of the CWRU dataset is used as the input samples,
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Table 5
The diagnostic results of generalizing TFconv layers to other CNN architectures.
Backbone Combined with Accuracy Variance
LeNet None 90.02 0.177
TFconv-STTF 95.71 0.355
TFconv-Chirplet 94.25 0.339
TFconv-Morlet 98.96 0.346
AlexNet None 97.32 0.476
TFconv-STTF 98.27 0.413
TFconv-Chirplet 97.84 0.339
TFconv-Morlet 99.89 0.129
ResNet None 97.74 0.243
TFconv-STTF 99.58 0.183
TFconv-Chirplet 98.79 0.464
TFconv-Morlet 99.96 0.058

and the channel numbers of the TFconv layer are all set to 128. Other experimental settings are consistent with those in the previous
diagnostic experiments on the CWRU dataset, and the diagnosis results are shown in Table 5.

It can be seen from the results that, the TFconv layers can significantly improve the diagnostic accuracy on the basis of different
backbone CNNs. The TFconv layer with the morlet kernel always achieves the best diagnostic performance, followed by the STTF
kernel. The chirplet kernel is slightly worse than the Morlet kernel and STTF kernel, but still better than the backbone model. This
experiment shows that the proposed TFconv layer is a general method and can be applied to other CNNs with different depths
to improve their diagnostic performance. Besides, this experiment also illustrates the importance of the backbone model and we
recommend researchers adopt a backbone CNN with enough depth to formulate the TFN.

6. Conclusion

In this article, an interpretable time-frequency convolutional (TFconv) layer is proposed to extract fault-related time-frequency
information. Taking the TFconv layer as a preprocessing layer, we formulated the time-frequency network (TFN) to achieve higher
diagnostic accuracy and explain the focusing frequency area in the prediction-making of CNN models. The diagnostic effectiveness
and interpretability of TFN have been verified by three datasets of mechanical fault diagnosis experiments. The conclusions of this
article could be summarized as follows: 1) The participation of the TFconv layer can greatly improve the diagnostic performance
of the CNN in mechanical fault diagnosis tasks. 2) The TFconv layer could explain the focusing frequency area of TFN to extract
features and make predictions. 3) The kernel function and channel number of the TFconv layer have a great influence on the
diagnostic performance of TFN, and the TFconv layer with 64-channel STTF kernel can achieve the overall optimum in accuracy and
efficiency. 4) The TFconv layer has outstanding performance on convergence speed and few-shot scenarios, and can be generalized
to other CNN models with different depths. In future research, we will explore other kernel functions with adaptive frequency
bandwidth to interpret focusing frequency more explicitly, and investigate the effectiveness of the TFconv layer for other neural
networks other than CNNs (e.g. autoencoder).
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