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ABSTRACT

Woven shell structures are beneficial for applications requiring lightweight, damage resilience, and design
tunability, such as in wearable devices, soft robotics, and aerospace systems. A fundamental component
of woven structures is the woven column. While the mechanical properties of a woven column can be
determined using sophisticated finite element (FE) simulations, these FE models are computationally
expensive and do not explain the underlying mechanics behind scaling relationships. In this work, we derive
purely analytical models for the buckling load and stiffness of woven columns, and discuss the criteria that
lead to different buckling modes of the woven columns. The simulated results based on our models closely
match experimental data across various weave design parameters. This work advances our understanding
of the mechanics of woven systems and serves as a baseline for the design of next-generation hierarchical
structures and materials.
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1 Introduction
The long-standing craft of weaving has gained traction in modern engineering due to its mechanical strength,
damage tolerance, and lightweight properties. These intrinsic benefits of weaving make it suitable for smart
material devices, soft robotics, aerospace applications, and more1–5. The plain weave (Fig. 1a), in which
perpendicular weavers alternate over and under each other, is the most commonly implemented pattern.
This simple weave pattern achieves tight interlocking of material, making for strong and durable structures6.
Previous work shows that plain woven 3D shell structures have much greater resilience1 yet they share similar
stiffness to their continuous counterparts, as demonstrated in Fig. 1b.

Similar to the continuous cylindrical shell, the woven column is a fundamental unit of 3D woven shell
structures. Cylindrical shell buckling has been widely studied, and there exist closed-form solutions for their
behaviors7–9. Woven column buckling behaviors, however, are more complicated due to local interactions
between weavers (Fig. 1c). Recent work on woven materials has focused on implementing finite element
analysis techniques10–13 and semi-analytical modeling14–16 to determine mechanical properties such as
stiffness and buckling behaviors. These models require large computational power, and unlike an analytical
model, they can only provide limited insight on the underlying mechanics of the system behavior. Moreover,
the mechanical behavior of the cylindrical woven column unit has remained unexplored.

In this work, we derive purely analytical models for the stiffness and buckling forces of woven columns.
Through physical experiments we explore the axial behavior of the column and verify the analytical models.
We then classify global and local buckling modes of woven columns, and determine relationships between the
buckling mode and the width of weavers. Our models and findings explain scaling laws where the stiffness
and buckling load of woven columns change with the thickness and width of weavers. This work provides



tools for choosing suitable weaver parameters for 3D woven column structures when they are to be designed
for various potential engineering applications.

Figure 1. Overview of the woven columns and their buckling behaviors which are explored in this work. a.
Fabrication of a plain woven column, which is a fundamental unit for 3D woven shell structures. We assemble the
vertical and horizontal weavers (left) into a woven column (right) using a plain weave pattern. b. A comparison shows
that a woven column (top) does not experience permanent damage after buckling, whereas a continuous column
(bottom) made with the same amount of material experiences plastic deformation and fracture. c. Buckling modes of
twelve different woven columns, where localized out-of-plane deformations of weavers contribute to buckling of the
columns. The buckling pattern is dependent on the parameters of the vertical and horizontal weavers. Scale bars are
5 cm.

2 Mechanics model derivation
We use fundamental mechanics theory to derive models for the stiffness and critical buckling loads of a
thin-walled, densely woven column. These models are based on geometric parameters and material properties
of the vertical and horizontal weavers we use to fabricate the columns.

2.1 Buckling of woven columns
We assume that prior to buckling, the deformation of the woven columns is small and linear. Thus, we estimate
that the critical buckling load of a woven column is the sum of the critical load of its vertical weavers and
that of its horizontal weavers: Pcr, total = Pcr, h +Pcr, v. We first consider the critical load of vertical weavers
Pcr, v. To simplify our model, we assume that the adjacent vertical weavers in a woven column initially buckle
independently. Furthermore, by assuming a densely woven cylinder, each segment of a vertical weaver along
its length also behaves independently. The load on a weaver with a small initial out-of-plane displacement can
be approximated by the buckling force of an initially straight weaver since this force is minimally greater.
Illustrated in Fig. 2a, the buckling force of the combined vertical weavers is then governed by the buckling
force of a singular segment. Based on the Euler buckling theory, Pcr, v is dependent on the width of vertical
weavers wv, the thickness of vertical weavers tv, and the width of horizontal weavers wh (which is also the
length of each segment of a vertical weaver):17

Pcr, v = nv
π2E ·wvt3

v

w2
h

, (1)

where nv is the total number of vertical weavers and E is the Young’s modulus of the material.
Next, we consider the critical buckling load of the horizontal weavers Pcr, h. These weavers are assumed

to be short cylindrical shells with axisymmetric sinusoidal initial perturbations. Based on previous research
on thin-walled cylinders7, the critical buckling load of a horizontal weaver is dependent on its normalized
thickness th/R (where th is the thickness of horizontal weavers and R is the radius of the woven column) and
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the surface area of the horizontal weaver A f . We use Koiter’s knockdown factor β to account for the influence
of the initial sinusoidal perturbation on the buckling load:8

Pcr, h = β · E(th/R)√
3(1−ν2)

·A f , (2)

where ν is the Poisson’s ratio. Axisymmetric sinusoidal perturbations greatly reduce the buckling force
compared to a perfect cylindrical shell. To account for this influence, Koiter’s knockdown factor β is solved
implicitly using material parameters and the imperfection perturbation size δh shown in Fig. 2b18:

β ·
(

δh

th

)
=
( 4

27
(1−ν

2)
)1/2

(1−β )2. (3)

The perturbation term δh in Eq. 3 is calculated by approximating the horizontal weaver as a polygonal section
with nv sides where the length of each side is wv. Then δh is the average distance of this polygon from a circle
of equal circumference. Equivalently, we take half the distance between its maximum and minimum radii as
in Fig. 2b to calculate the δh:

δh =
1
2

(
wv

2sin( π

nv
)
+

wv

2tan( π

nv
)

)
. (4)

We compute the buckling force of the horizontal weavers using Eqs. (2), (3), and (4). We then add it to
the buckling force of the vertical weavers Eq. (1) to obtain the buckling force of the entire woven column.

2.2 Stiffness of woven columns
Considering the linear deformation where the displacement is infinitesimally small, we assume that the
stiffness of a woven column is the sum of the stiffness of its horizontal weavers kh and the stiffness of its
vertical weavers kv: ktotal = kh + kv. We first consider the vertical weaver stiffness kv. We assume that the
vertical weavers deform sinusoidally as they are compressed, and that bending deformations store significantly
more energy than axial deformations. All vertical weavers act in parallel and resist bending deformations.
The slender vertical weavers mainly bend about the favored axis of bending (the horizontal axis), but they
also bend about the less favored axis of bending (the vertical axis). Therefore, the vertical weavers take on a
curved cross-section due to the nature of weaving, and this pre-curvature increases their stiffness significantly
by a factor α19–21. We balance forces and moments at the location of the greatest perturbation (as in Fig. 2a)
to obtain a dependence of the axial load of the weaver Pv on flexural rigidity EI, number of vertical weavers
nv, out-of-plane curvature of the weaver κ , and linear displacement perturbation δv. Note that κ and δv are
both functions of the axial displacement ∆. We calculate the stiffness as the derivative of axial load with
respect to axial displacement:

kv = α · nv

nh
· d

d∆

(
EI

κ(∆)

δv(∆)

)
(5)

The factor α accounts for the significant effect of curvature induced stiffness19–21, which increases with
vertical weaver width. We apply Pini’s equation19 to the vertical weaver segments, using the radius of the
woven column R:

α =
w4

v
60t2

v

(
δv(

nhπ

L−∆
)2 − ν

R

)2
+1 (6)
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Assuming the out-of-plane displacement δv is small and that each vertical weaver deforms sinusoidally
with nh half-waves, we determine the maximum curvature κ of the vertical weavers using the curvature
formula22. At the location where the maximum curvature occurs, the curvature reduces to

κ = δv

( nhπ

L−∆

)2
. (7)

Because κ ∝ δv in Eq. (7), the derivative in Eq. (5) simplifies without further calculation of δv. Therefore, we
combine Eqs. (5), (6), and (7) into

kv =
( w4

v
60t2

v

(
δv(

nhπ

L−∆
)2 − ν

R

)2
+1

)
·2nv

nh
EI

(nhπ)2

(L−∆)3 . (8)

Horizontal weavers act in series and deform axially in response to loading. The contact area A is the area
between vertical weavers where adjacent horizontal weavers make contact, as shown in Fig. 2b. Thus, the
contribution of the horizontal weavers to stiffness is

kh =
Envt2

h
nhwh

. (9)

We sum Eqs. (8) and (9) to obtain the overall stiffness of a woven column.

Figure 2. Derivation of the stiffness and the buckling load of a woven
column. a. Schematic of the vertical weavers. Each segment of a vertical
weaver is modeled as an independent column undergoing buckling. To derive
stiffness, the inner force and bending moment are analyzed at locations of
maximum curvature. b. Schematic of the horizontal weavers. Horizontal
weavers are modeled as axisymmetric sinusoidally perturbed cylindrical shells
stacked on top of one another. The horizontal cross-section is approximated as
a polygon with nv sides. Given a cross-section, the perturbation δh is derived by
averaging Rmax and Rmin. The contact area A for deriving the horizontal stiffness
is taken as the total contact area between adjacent horizontal weavers.

3 Fabrication and experimental methods
We conducted a parametric study and validated our models through physical experimentation on woven
cylindrical column samples. We constructed samples varying: (1) vertical weaver thickness tv, (2) horizontal
weaver thickness th, (3) vertical weaver width wv, (4) horizontal weaver width wh, and (5) sample height h.
We construct a base woven column with tv = th = 0.191 mm, wv = wh = 20 mm, and h = 140 mm. We then
conduct five experiments, each keeping one parameter constant and varying the other four.
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Our samples are woven by hand from vertical and horizontal strips of Mylar® polyester connected by a
vertical seam of split pins (Fig. 3a). For studies with consistent vertical weaver thickness, we cut the vertical
weavers from a continuous Mylar® sheet and leave a 10 mm connection at the top and bottom (Fig. 3a). This
connection at the two ends assists fabrication and facilitates consistency in spacing, but may cause varying
end effects when the vertical weaver thickness varies. In our parametric study where the thickness of vertical
weavers varies, we instead connect vertical weavers using two additional rows of split pins (Fig. 3b). We
maintain consistent tightness of the weaving across all samples by scaling the spacing between weavers
proportionally to the thickness of weavers23, 24.

We obtained the experimental buckling force, stiffness, and qualitative buckling mode for each woven
sample using plate-to-plate compression loading between two acrylic plates (Fig. 3b, c, and d). The samples
were compressed at a rate of 15 mm/min using a Mark-10® ESM 1500 single-column tabletop testing system
with a 250 N load cell. Force and displacement are recorded at a sampling rate of 20 Hz until a global
maximum force is reached. Buckling force is taken as the peak load experienced and stiffness is taken by
numerically differentiating the data to find the maximum instantaneous slope before the buckling force is
reached (Fig. 3e). To account for precision error in sample fabrication, we tested three identical samples of
each variation and calculated the average values and error ranges.

Figure 3. Fabrication of woven columns and the test setup. a. Assembly of a column where
vertical weavers are connected at the top and bottom. This design maintains consistent spacing
in samples, but can only be used for testing in which the thickness of vertical weavers remains
constant. Scale bars are 4 cm. b. Assembly of a column where vertical weavers are mechanically
joined using split pins at the top and bottom of horizontal weavers. This design maintains consistent
end effects, and is only used in a few of our tests where vertical thickness varies. Scale bars are 4
cm. c. Test setup using Mark-10® ESM 1500 single-column tabletop testing system. d. Schematic
for plate-to-plate compression loading of woven columns. Vertical and horizontal weavers are
both assumed to be deformed with sinusoidal deflections. e. A typical force–displacement curve
obtained from an experiment with the buckling force and stiffness measured.
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4 Results
Parametric studies were performed by varying horizontal weaver width wh, vertical weaver width wv, horizontal
weaver material thickness th, vertical weaver material thickness tv, and sample height h. We observed and
classified the different buckling modes of woven columns, and we validated our mechanics models for the
buckling force and stiffness of woven columns against the experimental data.

4.1 Buckling mode classification
In our parametric study, we vary the widths of vertical and horizontal weavers. We observed a strong
correlation of buckling behavior with the weaver widths (Fig. 4a). We define the buckling behavior of
a column as local if it experiences any local maxima in its force-displacement curve before 95% of the
buckling force is reached. We define these local maxima as force values in which all forces within a ±0.4
mm displacement range are less than 93% of the local maximum value (Fig. 4c). We define the buckling
behavior of the column as global if it does not exhibit these local maxima before peak buckling is reached
(Fig. 4b). By using this criterion to distinguish local and global buckling modes, we can determine an
approximate first-order boundary between local and global buckling regions by: wh = 2.6wv −40. That is,
if 2.6wv −wh > 40 then the column is more likely to buckle locally. Otherwise, it is more likely to buckle
globally.

For the columns that experience the global buckling mode, under large deformations the horizontal and
vertical weavers tend to deform together, typically into a diamond pattern. Even for this global buckling
scenario, we believe that local buckling of vertical and horizontal weavers remains the precipitating factor,
consistent with our assumptions in Section 2. Meanwhile, for local buckling modes, initial buckling can occur
in multiple locations before the system reaches a peak load. We observe more global buckling in columns with
wider horizontal weavers and narrower vertical weavers because these patterns allow the cylinder to buckle
between horizontal boundaries. Meanwhile, when vertical weavers are wider and horizontal weavers are
narrower, the additional curvature of the vertical weavers counteracts buckling across horizontal boundaries,
which results in more complicated local behaviors.

We observe that for columns experiencing global buckling, the force-displacement behavior before peak
load is more predictable than for locally buckling columns. Therefore, applications requiring repeatable or
predictable deformation such as in buckling-enabled soft robotics or mechanical computing may benefit from
woven structures that undergo a global buckling mode. Our results suggest that the desired buckling modes
for 3D woven structure can be specifically designed by adjusting the widths of the vertical and horizontal
weavers.

4.2 Scaling relationships of buckling load
The buckling force of a woven column increases with both the thicknesses of its vertical and horizontal
weavers, as validated in Fig. 5a and b. Buckling force increases proportionally to the thickness of vertical
weavers cubed (Pcr ∝ t3

v ), resulting from the relationship of vertical weaver buckling force to the second
moment of inertia (Fig. 5a). Buckling force increases with the thickness of horizontal weavers as a result of
the horizontal weaver buckling force component (Fig. 5b).

Shown in Fig. 5d and e, our buckling force model is validated against variation in the widths of vertical and
horizontal weavers. Increases in the width of vertical weavers wv cause greater initial sinusoidal imperfections
in horizontal weavers, making the horizontal weavers and the entire column more prone to buckling (Fig.
5d). When the width of horizontal weavers wh is varied, our idealized model predicts that for small widths of
horizontal weavers, the vertical weavers will experience higher-order sinusoidal wave patterns and higher
buckling forces (Fig. 5e). In reality, inconsistencies in weaving allow for weak spots where the vertical
weavers form uneven waves and the resulting buckling force is lower than predicted. These defects become
more likely when horizontal weavers are less wide and vertical weavers have more segmental waves, so a
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Figure 4. Comparison of buckling modes. a. Depending on the widths of horizontal and vertical
weavers in a woven column, the buckling mode of the column switches between global, local,
and combination modes. b. Typical force–displacement curve for a column that experiences
global buckling into a diamond pattern, with no pre-buckling behavior observed. c. Typical force–
displacement curve for a column that experiences local buckling, where pre-buckling is observed,
and local force maxima occur before a peak force is obtained.

realistically fabricated column will not experience substantial increases in buckling forces as the horizontal
weaver widths become small (Fig. 5e). This effect on buckling force is most apparent in our data when
horizontal and vertical widths are both less than 15 mm. In contrast, when the width of horizontal weavers
wh increases, the vertical weavers have few segmental waves and the buckling force approaches a constant,
which is accurately captured by our theoretical model (Fig. 5e).

When considering the column height, there is a negligible effect on the buckling force compared to other
parameters (Fig. 5c). Our model, similar to classical models for cylindrical shell buckling8, does not account
for the height of the column, so it matches this trend well. This result further supports our initial assumption,
where local buckling of the vertical and horizontal weavers, rather than global system buckling, drive the
behavior of the system.

4.3 Scaling relationships of stiffness
The stiffness of the woven column increases with respect to both its vertical and horizontal weaver thicknesses,
as validated in Fig. 6a and b. By increasing vertical weaver thickness tv, we increase the bending modulus of
the vertical weavers by a factor of thickness cubed t3

v , resulting in a stiffer structure (Fig. 6a). By increasing
the horizontal weaver thickness th, we increase the horizontal weaver stiffness proportionally to their thickness
squared (k ∝ t2

h ). This increase is because the contact area between adjacent horizontal weavers increases with
the thickness squared (Fig. 6b).

Shown in Fig. 6d and e, our stiffness model is validated against variation in vertical and horizontal weaver
width. As the vertical weaver width wv increases, the vertical weavers exhibit more curvature about the less
favored vertical axis of bending, resulting in additional curvature-induced stiffness from the vertical weavers
(Fig. 6d). As wv decreases, the contact area between horizontal weavers increases, resulting in increased
stiffness due to the horizontal weaver component of stiffness. As the horizontal weaver width wh decreases,
the vertical weavers have smaller periods with greater curvature relative to displacement, and thus higher
stiffness (6e). In both cases, increasing the overall stiffness of the column can be achieved by having the
vertical weavers contribute a larger portion of stiffness than the horizontal weavers.
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Figure 5. Influence of design parameters on buckling forces of woven columns. Buckling
force with respect to: a. Vertical weaver thickness, b. Horizontal weaver thickness, c. Column
height, d. Vertical weaver width, e. Horizontal weaver width. f. Schematic of all design parameters.

a. b. c.

d. e. f.

th

h
wh

tv

wv

Figure 6. Influence of design parameters on the stiffness of woven columns. Stiffness with
respect to: a. Vertical weaver thickness, b. Horizontal weaver thickness, c. Column height, d.
Vertical weaver width, e. Horizontal weaver width. f. Schematic of all design parameters.

When considering the height of the columns in Fig. 6c, the stiffness increases for shorter columns because
of the contribution of the horizontal weavers. The stiffness increases exponentially for shorter columns
because when keeping wh constant, we have h ∝ nh hence the relationship follows from kh ∝

1
nh

.
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5 Conclusions
We created analytical models that predict the buckling force and stiffness of cylindrical woven columns made
from a dense planar weave. The models are based on the geometry of the columns and basic mechanics
principles, which makes the models versatile and simple to use. The models have been validated with
experimental data considering different parameters, including weaver widths, weaver thicknesses, and column
height. Our models explain the underlying mechanics behind buckling force and stiffness trends in woven
structures and serve as a closed-form tool for design. We determined that while both vertical and horizontal
weavers contribute to the overall column buckling force and stiffness, in some cases one or the other will have
a larger influence on tuning a specific property. When thickness of either horizontal or vertical weavers is
increased, both the buckling capacity and the stiffness increase. When we increase the width of horizontal
weavers, the buckling capacity remains constant and the stiffness decreases. When we increase the width
of vertical weavers, the buckling capacity decreases while the stiffness increases. Our results can inform
design for efficient material use by identifying which weaver parameters can be changed to achieve a desired
structural property.

We established predictive guidelines for the buckling mode of a column. We categorized a column’s
buckling mode as local if the column experiences local maxima in its force-displacement curve before
buckling. A column’s buckling mode is categorized as global if the column does not experience local maxima
before buckling. These modes are largely dependent on horizontal and vertical weaver widths, and the
transition between modes can be described by a linear relationship between horizontal and vertical weaver
widths. Columns with larger vertical weaver widths and smaller horizontal weaver widths typically experience
local buckling. Columns with smaller vertical weaver widths and larger horizontal weaver widths typically
experience global buckling where the structure deforms into a diamond pattern. Our findings serve to guide the
design of woven structures such that favorable behaviors and buckling modes can be achieved, and buckling
load and stiffness can be analytically calculated. These hierarchical woven structures have potential for future
engineering applications in soft intelligent robots, flexible metamaterials, customizable wearable devices, and
more.

Acknowledgements
The authors acknowledge support from the Air Force Office of Scientific Research under award number
FA9550-22-1-0321. The paper reflects the views and opinions of the authors, and not necessarily those of the
funding entities.

References
1. Tu, G. W. & Filipov, E. T. Corner topology makes woven baskets into stiff, yet resilient metamaterials.

Phys. Rev. Res. 7, 033193, DOI: https://doi.org/10.1103/9srl-9gsc (2025).

2. Tu, G. W. & Filipov, E. T. Engineering snags for spatial curvature in weaves: fabrication, mechanics, and
inverse design. Soft Matter 21, 8793–8802, DOI: https://doi.org/10.1039/D5SM00813A (2025).

3. Tu, G. W. & Filipov, E. T. Origami of multi-layered spaced sheets. J. Mech. Phys. Solids 190, 105730,
DOI: https://doi.org/10.1016/j.jmps.2024.105730 (2024).

4. Jing, K., Xie, S., Zhang, Y., Zhou, H. & Yan, H. Impact resistance of 3d woven fabrics and composites:
A review. Thin-Walled Struct. 213, 113262, DOI: https://doi.org/10.1016/j.tws.2025.113262 (2025).

5. Wang, Z. & Sobey, A. Many-objective design optimisation of a plain weave fabric composite. Compos.
Struct. 285, 115246, DOI: https://doi.org/10.1016/j.compstruct.2022.115246 (2022).

9/11

https://doi.org/10.1103/9srl-9gsc
https://doi.org/10.1039/D5SM00813A
https://doi.org/10.1016/j.jmps.2024.105730
https://doi.org/10.1016/j.tws.2025.113262
https://doi.org/10.1016/j.compstruct.2022.115246


6. Abu Bakar, I. A., Kramer, O., Bordas, S. & Rabczuk, T. Optimization of elastic properties and weaving
patterns of woven composites. Compos. Struct. 100, 575–591, DOI: https://doi.org/10.1016/j.compstruct.
2012.12.043 (2013).

7. Hilburger, M. W. Buckling of thin-walled circular cylinders. NASA Special Publication NASA SP-8007-
2020/REV 2, NASA, Hampton, VA (2020). Revised version of NASA SP-8007 (1965).

8. Gerasimidis, S., Virot, E., Hutchinson, J. W. & Rubinstein, S. M. On establishing buckling knockdowns
for imperfection-sensitive shell structures. J. Appl. Mech. 85, DOI: https://doi.org/10.1115/1.4040455
(2018).

9. Ma, H., Jiao, P., Li, H., Cheng, Z. & Chen, Z. Buckling analyses of thin-walled cylindrical shells
subjected to multi-region localized axial compression: Experimental and numerical study. Thin-Walled
Struct. 183, 110330, DOI: https://doi.org/10.1016/j.tws.2022.110330 (2023).

10. Kumar, A. A., Hii, A. K., Hallett, S. R. & Said, B. E. Modelling woven composites with shell elements:
An application of second-order computational homogenisation. Comput. & Struct. 312, 107736, DOI:
https://doi.org/10.1016/j.compstruc.2025.107736 (2025).

11. Júnior, C. J. F., Nandurdikar, V., Neto, A. G. & Harish, A. B. Concurrent multiscale modelling of woven
fabrics: Using beam finite elements with contact at mesoscale. Finite Elem. Analysis Des. 242, 104274,
DOI: https://doi.org/10.1016/j.finel.2024.104274 (2024).

12. Nilakantan, G., Keefe, M., Bogetti, T. A., Adkinson, R. & Gillespie, J. W. On the finite element analysis
of woven fabric impact using multiscale modeling techniques. Int. J. Solids Struct. 47, 2300–2315, DOI:
https://doi.org/10.1016/j.ijsolstr.2010.04.029 (2010).

13. Nguyen, Q. T., Nguyen, T. D., Dao, D. V., Le, D. V. & Nguyen, T. T. A study on mechanical properties
of 3d printing abs plastic according to different printing orientations. IOP Conf. Series: Mater. Sci. Eng.
459, DOI: https://doi.org/10.1088/1757-899X/459/1/012082 (2018).

14. Luo, D., Zhong, Y., Xi, S. & Shi, Z. Static, buckling, and free-vibration analysis of plain-woven composite
plate with finite thickness using vam-based equivalent model. Thin-Walled Struct. 169, 108503, DOI:
https://doi.org/10.1016/j.tws.2021.108503 (2021).

15. Dabiryan, H., Jesri, M., Ovesy, H. R. & Mazloomi, Z. S. Numerical and experimental study of buckling
behavior of delaminated plate in glass woven fabric composite laminates. J. Eng. Fibers Fabr. 17, DOI:
https://doi.org/10.1177/15589250221091268 (2022).

16. El Messiry, M. & El-Tarfawy, S. Mechanical properties and buckling analysis of woven fabric. Textile
Res. J. 89, 2900–2918, DOI: https://doi.org/10.1177/0040517518803777 (2018).

17. Hibbeler, R. Mechanics of Materials (Pearson, 2015).

18. Koiter, W. The effect of axisymmetric imperfections on the buckling of cylindrical shells under axial
compression. Proc. K. Ned. Akad. Wet., B 66, 265–279 (1963).

19. Pini, V. et al. How two-dimensional bending can extraordinarily stiffen thin sheets. Sci. Reports 6, 29627,
DOI: https://doi.org/10.1038/srep29627 (2016).

20. Taffetani, M., Box, F., Neveu, A. & Vella, D. Limitations of curvature-induced rigidity: How a curved strip
buckles under gravity. Europhys. Lett. 127, 14001, DOI: https://doi.org/10.1209/0295-5075/127/14001
(2019).

21. Barois, T., Tadrist, L., Quilliet, C. & Forterre, Y. How a curved elastic strip opens. Phys. Rev. Lett. 113,
214301, DOI: https://doi.org/10.1103/PhysRevLett.113.214301 (2014).

22. Colley, S. J. Vector Calculus (Pearson, Boston, 2018), 5th edn.

10/11

https://doi.org/10.1016/j.compstruct.2012.12.043
https://doi.org/10.1016/j.compstruct.2012.12.043
https://doi.org/10.1115/1.4040455
https://doi.org/10.1016/j.tws.2022.110330
https://doi.org/10.1016/j.compstruc.2025.107736
https://doi.org/10.1016/j.finel.2024.104274
https://doi.org/10.1016/j.ijsolstr.2010.04.029
https://doi.org/10.1088/1757-899X/459/1/012082
https://doi.org/10.1016/j.tws.2021.108503
https://doi.org/10.1177/15589250221091268
https://doi.org/10.1177/0040517518803777
https://doi.org/10.1038/srep29627
https://doi.org/10.1209/0295-5075/127/14001
https://doi.org/10.1103/PhysRevLett.113.214301


23. Banerjee, P. Principles of fabric formation (CRC Press, 2014).

24. Lord, P. Weaving: Conversion of yarn to fabric (Woodhead Publishing, 1982).

11/11


	Introduction
	Mechanics model derivation
	Buckling of woven columns
	Stiffness of woven columns

	Fabrication and experimental methods
	Results
	Buckling mode classification
	Scaling relationships of buckling load
	Scaling relationships of stiffness

	Conclusions
	References

