G. Wayne Tu

guoweitu@umich.edu | 🎖 Google Scholar | 🔗 www.waynetu.com

EDUCATION

[J.12]

• University of Michigan Ph.D. in Civil Engineering (Structures, Mechanics & Materials Track) • GPA: 3.95/4.00		Sep. 2022 – June 2026 Ann Arbor, MI
	visor: Prof. Evgueni Filipov (Deployable and Reconfigurable Structures Lab)	
	esis topic: Functional 3D woven structures and metamaterials	
Shanghai Jiao Tong University M.S. in Mechanical Engineering		Sep. 2019 – June 2022 Shanghai, CN
		Sep. 2015 – June 2019
• Chongqing University B.S. in Mechanical Engineering		Chongqing, CN
Pubi	LICATIONS AND PRESENTATIONS	
Journa	al Papers	
	During Ph.D.	-
[J.1]	Tu, G.W. and Filipov, E.T. (2025). Corner topology makes woven baskets into a metamaterials. <i>Physical Review Research</i> , 2025, 7, 033193. [PDF] [Videos] [Media Tech Xplore, News Wise, Interesting Engineering, EurekAlert!, Highways Toda	Coverage: Michigan News,
[J.2]	Tu, G.W. and Filipov, E.T. (2025). Engineering snags for spatial curvature in weaves: Fabrication, mechanics, and inverse design. <i>Soft Matter</i> (accepted, DOI: 10.1039/D5SM00813A). [PDF]	
[J.3]	<u>Tu, G.W.</u> and Filipov, E.T. (2024). Origami of multi-layered spaced sheets . <i>Journal of the Mechanics and Physics of Solids</i> , p.105730. [PDF]	
[J.4]	Tu, G.W. and Filipov, E.T. (2025). Integrating active material into 3D plain weatextiles . <i>Soft Robotics</i> (submitted). [Videos]	eves for load-bearing robotic
[J.5]	Krankel, J., <u>Tu., G.W.</u> and Filipov, E.T. (2025). Stiffness and buckling behavior <i>Extreme Mechanics Letters</i> (submitted). [PDF]	of plain-woven columns.
[J.6]	Chen, K., <u>Tu</u> , G.W., Dong, X., Huang, Y. and Peng, Z. (2023). Multifunctional application of nonlinear metamaterial with two-dimensional bandgap . <i>Science: Technological Sciences</i> , 66 (3), 869-880. [PDF]	
[J.7]	Chen, K., Dong, X., Gao, P., Zhang, J., Sun, Y., <u>Tu, G.W.</u> and Peng, Z. (2023). Mutopological valley-locked elastic waves . <i>International Journal of Mechanical Science</i>	
	Before Ph.D.	
[J.8]	Tu, G.W., Dong, X., Chen, S., Zhao, B., Hu, L. and Peng, Z. (2020). Iterative nonlinear chirp mode decomposition: A Hilbert-Huang transform-like method in capturing intra-wave modulations of nonlinear responses . <i>Journal of Sound and Vibration</i> , 485, p.115571. [PDF]	
[J.9]	Tu, G.W., Dong, X., Qian, C., Chen, S., Hu, L. and Peng, Z. (2021). Intra-wave n processes . <i>International Journal of Machine Tools and Manufacture</i> , 163, p.103705.	
[J.10]	Dong, X., <u>Tu, G.W.</u> , Hu, L. and Peng, Z. (2024). Suppress chatter in milling of with active support . <i>Journal of Vibration and Control</i> , 30(5-6), pp.1286-1296. [PD]	-
[J.11]	Dong, X., <u>Tu, G.W.</u> , Wang, X. and Chen, S. (2021). Real-time chatter detection of filter and energy entropy . <i>The International Journal of Advanced Manufacturing To</i> [PDF]	

[J.13] Zhao, B., Cheng, C., <u>Tu, G.W.</u>, Peng, Z., He, Q. and Meng, G. (2021). **An interpretable denoising layer for neural networks based on reproducing kernel Hilbert space and its application in machine fault diagnosis**. *Journal of Mechanical Engineering*, 34(1), 1-11. [PDF]

Systems and Signal Processing, 207, p.110952. [PDF]

Chen, Q., Dong, X., Tu, G.W., Wang, D., Cheng, C., Zhao, B. and Peng, Z. (2024). TFN: An interpretable

neural network with time-frequency transform embedded for intelligent fault diagnosis. Mechanical

[J.14] Huangfu, Y., Dong, X., Chen, K., <u>Tu, G.W.</u>, Long, X. and Peng, Z. (2022). A tribo-dynamic based pitting evolution model of planetary gear sets: A topographical updating approach. *International Journal of Mechanical Sciences*, 220, p.107157. [PDF]

Conference Presentations

- [C.1] Tu, G.W. and Filipov, E.T. (2025). Corner topology of woven baskets inspires stiff, yet resilient metamaterials. In *ASME International Mechanical Engineering Congress and Exposition (IMECE)*, November 16–20, Memphis, TN (Accepted).
- [C.2] Filipov, E.T. and <u>Tu, G.W.</u> (2025). **Basket weaving provides remarkable stiffness and resilience for functional structures**. In *European Solid Mechanics Conference*, July 7–11, Lyon, France.
- [C.3] Tu, G.W. and Filipov, E.T. (2025). How corner topology makes woven baskets ultra-stiff, yet ultra-resilient. In American Physical Society (APS) March Meeting, March 16–21, Anaheim, CA. (Won APS DMP Ovshinsky Travel Award)
- [C.4] Tu, G.W. and Filipov, E.T. (2024). **Origami of multi-layered spaced sheets**. In ASCE Engineering Mechanics Institute Conference and Probabilistic Mechanics & Reliability Conference (EMI/PMC), May 28–31, Chicago, IL. (Won Best Elasticity Student Paper Award)
- [C.5] Tu, G.W. and Filipov, E.T. (2023). **Kinematics of spaced origami sheets**. In *ASME International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE)*, August 20–23, Boston, MA.

Poster Presentations

- [P.1] Tu, G.W. and Filipov, E.T. (2025). How corner topology of woven baskets inspires stiff, yet resilient metamaterials. In *ASME International Mechanical Engineering Congress and Exposition (IMECE)*, November 16–20, Memphis, TN (Accepted).
- [P.2] Tu, G.W. and Filipov, E.T. (2025). Corner topology makes woven baskets into stiff, yet resilient metamaterials. In *Michigan Materials Research Institute Annual Summit*, June 3–4, Ann Arbor, MI.
- [P.3] Tu, G.W., Yi Z. and Filipov, E.T. (2024). **Design of modular origami structures for multifunctional cloaking and protection**. In *Automotive Research Center Annual Program Review*, June 5–7, Ann Arbor, MI.

RESEARCH EXPERIENCE

• Research Assistant at Deployable and Reconfigurable Structures Lab

Sep 2022 - June 2026

University of Michigan | Advisor: Prof. Evgueni Filipov

- Integrated active materials into 3D woven structures to create load-bearing robotic textiles.
- Proposed a general woven corner platform to modularly build ultra-stiff yet ultra-resilient woven metamaterials.
- Designed meter-scale deployable acoustic cloaks and thermal shields based on multi-layered origami.
- Research Assistant at Smart Materials and Structures Lab

Sep. 2019 - June 2022

- Shanghai Jiao Tong University | Advisors: Prof. Xingjian Dong & Prof. Zhike Peng
- \circ Designed a novel metastructure inspired by ancient window lattices to isolate low-frequency vibration.
- Developed an actively controlled smart spindle system to suppress chatter instability in milling.
- Proposed a new algorithm to quantify the nonlinearity of dynamical systems.

MENTORING AND TEACHING EXPERIENCE

• Graduate Student Mentor for Summer Undergraduate Research Program (SURE 2025)

Summer 2025

- University of Michigan | Mentee: Jaimie Krankel
- Codeveloped a theoretical model for predicting stiffness and buckling loads of woven columns.
- Coauthored a paper submitted to Extreme Mechanics Letters.

• Graduate Student Instructor for Civil Engineering Materials (CEE 351)

Fall 2023

University of Michigan | Instructor: Dr. Mengjun Hou

- Taught labs on experimental testing of engineering materials including concrete, steel, and wood.
- Received 4.5/5.0 in graduate student instructor evaluation from students.
- Course topic: Discussion of basic mechanical and physical properties of a variety of important civil and environmental engineering materials such as concrete, steel, plastic, asphalt, wood and fiber composites.

HONORS AND AWARDS

• IMECE Student Travel Award	2025
American Society of Mechanical Engineers (ASME) Applied Mechanics Division	
Stanford R. Ovshinsky Student Travel Award	2025
American Physical Society (APS) Division of Materials Physics	
• Richard and Eleanor Towner Prize for Outstanding Ph.D. Research	2025
University of Michigan	
Best Elasticity Student Paper Award	2024
American Society of Civil Engineers (ASCE) Engineering Mechanics Institute	
• Michigan Institute of Computational Discovery & Engineering (MICDE) Fellowship	2022
University of Michigan	
• Outstanding Graduate Award (Top 1%)	2022
Shanghai Jiao Tong University	
• Best Master Thesis Award (20 out of 5,000+)	
Shanghai Jiao Tong University	
• National Scholarship (Awarded Twice, Top 0.1%)	
Chinese Government	