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Weaving as an old craft has extensive applications in modern science and technology such as smart
textiles and intelligent soft robots. However, weaving irregular curved surfaces has been difficult, with prior
alternatives requiring curved ribbons and triaxial weaving patterns. In this work, we present a simple
strategy to achieve complex spatial curvature by purposely introducing ‘snags’, a traditionally unwanted
textile defect, into dense plain weaves consisting of straight ribbons assembled in a straightforward biaxial
network. We detail the fabrication methodology where we pull out ribbons of initially smooth two-(2D)
and three-dimensional (3D) plain weaves to form local snags. We show that these local defects cause
global curvatures through the propagation of geometric frustration. We then use a reduced-order bar &
hinge model to simulate the mechanics-guided deformation of snagged plain weaves, and we investigate
how the curvature scales with system parameters such as the thickness and Young's modulus of the

Received 9th August 2025, ribbons. Finally, we introduce an inverse design platform where an evolutionary algorithm is used to

Accepted 16th October 2025 inversely compute the optimal snag patterns of smooth plain weaves to approximate arbitrary target
DOI: 10.1039/d5sm00813a surfaces including 2D and 3D woven exoskeletons that fit human legs and elbows, respectively.

Engineering snags in plain weaves as a general strategy can pave the way for future design of
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1 Introduction

As an efficient strategy to assemble one-dimensional (1D)
materials into two-(2D) and three-dimensional (3D) structural
systems, weaving techniques are being explored in modern
science and engineering to make artificial muscles,’ impact-
resistant armor,*® architected metamaterials,”® and more.
When fabricating these woven systems, there are various weav-
ing patterns that can be used to arrange the 1D materials into
more complex geometries. Among all weaving patterns, the
plain weave pattern is the most straightforward where straight
ribbons/fibers are arranged in an one-over-one-under
manner.” "> The simplicity of plain weaves makes them highly
compatible with automated weaving machines,"*** adaptable
to different materials,">™*” and to different length scales.'®>*
However, plain weaves lack a capability of forming complex
spatial curvatures, which are necessary for many engineering
applications.>*”>* To approximate intricate 3D curved surfaces,
one common strategy is sparse triaxial weaving with originally
curved ribbons.>**” Weaving non-uniform curved ribbons in a

“ Deployable and Reconfigurable Structures Laboratory, Department of Civil and
Environmental Engineering, University of Michigan, Ann Arbor, MI, USA.
E-mail: filipov@umich.edu

b Deployable and Reconfigurable Structures Laboratory, Department of Mechanical
Engineering, University of Michigan, Ann Arbor, MI, USA

This journal is © The Royal Society of Chemistry 2025

customizable wearable devices, adaptive soft robots, reconfigurable architecture, and more.

tri-axial manner is time-consuming, non-intuitional, and less
adaptive to different materials compared to plain weaves.**7°
Besides, the sparsity of tri-axially woven surfaces undermines
the structural strength and water/ballistic resistance of the
system.’"*> Another common strategy to construct 3D curva-
tures is mold forming/draping of planar woven sheets.**™¢
These mold forming processes cause irreversible plastic
damage to the fibers and weaken the mechanical performance
of the woven systems. For non-woven surfaces, common
curvature-forming strategies include strain-mismatch, kiri-
gami, and instability-driven morphing.”” However, most of
those strategies cannot be directly applied to plain weaves.

In this work, we introduce a weaving technique where we
intentionally introduce simple snags into dense plain weaves to
achieve complex spatial curvature. As a traditionally unwanted
defect in woven fabrics where a ribbon/fiber is accidentally
pulled out of place and misaligned from its intended interla-
cing path, snags distort the surface and can cause unexpected
deformation and curvature.*®*° Here, we systematically engi-
neer these localized disruptions to alter the geometry of 2D and
3D plain-woven surfaces and structures in a predictable
and programmable manner. Some examples are shown in
Fig. 1 and 2.

We first discuss the fabrication of snagged plain weaves
where we follow a pre-designed snag pattern and introduce
those snags into an originally 2D or 3D plain weave in a simple
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Fig. 1 Engineering snags in plain weaves to achieve spatial curvature. (a) Fabrication of a snag in a densely plain-woven flat sheet; (b) how a local snag
causes curvature through the propagation of action-reaction force pairs; ‘B.C." stands for ‘boundary condition’; (c) variations of the size, shape, and
direction of the snag in (a) and the resulting geometries; (c, i) shows a larger yet still square snag, (c, ii) shows a rectangular strip-like snag, and (c, iii) shows
a diagonal strip-like snag; (d) combinations of the three types of snags in (c) and the resulting geometries; (d, i) shows a combination of two rectangular
snags, which results in a skate fish-like shape; (d, ii) shows a combination of four diagonal snags, which results in an oblique cylindrical shape; (d, iii) shows
a random combination of square, rectangular, and diagonal snags, which results in a random complex shape. In each case in (c) and (d), the left shows the
2D snag patterns, the middle shows the physical prototypes, and the right shows the simulated shapes where the colormap represents the normalized
deviation between the simulated and scanned geometries §/L where § is the deviation (Hausdorff distances at each node) and L is the average length of all
ribbons used. In all binary snag patterns in Fig. 1(c) and (d), we merge any snag units that share sides (but not the diagonal units that only share vertices)

into a snag block, and we weave the circumferential ribbon of each snag block as a whole.

and systematic way (Section 2). We also explain how these local
geometric frustrations cause a global curvature. Then, we
provide a mechanics-based reduced-order bar & hinge model
to simulate the geometry of snagged plain weaves (Section 3).
Using this mechanics model, we numerically and experimen-
tally investigate how spatial curvatures of snagged plain weaves
scale with essential design parameters including the size of the
surface, the thickness of the ribbons, and the Young’s modulus
of the material (Section 4). After gaining insights into the
coupling between the mechanics and geometry, we establish
an inverse design framework where we can find an optimal
snag pattern once a target surface is given (Section 5). We give
real-life examples where 2D and 3D snagged plain-woven
surfaces can fit onto a human leg and elbow, which is a
potential solution to customized woven exoskeleton suits.*!
As a general simple strategy to program the curvature of
densely plain-woven systems, engineering snags can make a
paradigm shift in the future design of next-generation wearable
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electronics, intelligent soft robots, flexible metamaterials,
and more.

2 Engineering snags in plain weaves

In this section, we detail how we fabricate snags in 2D plain
weaves, how local snags enable global curvatures, and how we
generalize the snagging strategy to complex 3D plain weaves.

2.1 Snags in 2D plain-woven sheets

Fig. 1(a) shows how we start the fabrication with a 2D square
densely plain-woven sheet where the dimension is 9 x 9 unit?
and all constituent ribbons are secured at the boundary by split
pins. All physical models shown here are made from Mylar
polyester that is 7.5 mil (0.1905 mm) thick, and the width of the
ribbons is 10 mm. The plain weave is densely packed, while a
small gap d = 0.5 mm is included between the crossing ribbons

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Generalizing the snagging strategy in Fig. 1 to 3D plain-woven surfaces. In Fig. 1 we show how we use engineered snags to tune the curvatures of initially
2D weaves. Here in Fig. 2 we apply a similar strategy to initially 3D weaves. (a) Comparison between a 3D plain-woven conical surface (i) without and (i) with snags;
(b) comparison between a 3D plain-woven saddle surface (i) without and (i) with snags; (c) comparison between a 3D plain-woven column that has a closed
surface (i) without and (i) with snags. In (a, i), (b, i), and (c, i), the left shows the physical prototypes, and the right shows the simulated shapes. In (a, ii), (b, i), and (c, i),
the left shows the snag patterns, the middle shows the physical prototypes, and the right shows the simulated shapes. In all simulated shapes in (a), (b), and (c), the
colormap represents the normalized deviation between the simulated and scanned geometries 5/L where § is the deviation (Hausdorff distances at each node)
and L is the average length of all ribbons used. In photos of physical prototypes in (a), (b), and (c), the colored arrows indicate the paths of the inter-woven ribbons
that meet at the centers (a), (b) or the vertices (c) of each 3D surface, while the colored solid lines without arrows highlight the edges of each 3D surface.

such that the length of each ribbon is (w + d)N, where w is the
width of ribbons and N. is the number of crossing ribbons.
Then, we vertically pull out the two ribbons that cross in the
center of the sheet while we re-secure both ribbons at their new
boundaries. Finally, we use a circumferential ribbon to weave
around the pulled-out part. In this way, we introduce a snag to
the 2D woven sheet. The snag causes the two centered ribbons
to protrude from the sheet, but it also causes the adjacent
ribbons to deform vertically along the positive z direction and
thus leads to curvature of the sheet. A local snag causes
curvature because the neighboring ribbons impose an action
force downward on the snagged centered ribbons as the
centered ribbons move upward, and meanwhile the neighbor-
ing ribbons are subject to a reaction force upward (see
Fig. 1(b)). This local perturbation eventually spreads through

This journal is © The Royal Society of Chemistry 2025

all ribbons and gives the woven sheet a dome-like shape (even
though the magnitude of the dome is small in Fig. 1(b)). The
snag effect is similar to how a topological defect in a crystalline
lattice creates curvature or frustration in the surrounding
material.*>**

We can change the geometry of the woven sheet by changing
the size, shape, or direction of the snag. Fig. 1(c) gives three
examples, where first we make the dome-like shape deeper
through a larger yet still square snag (Fig. 1(c)-i), then we make
the sheet bend about only one axis of symmetry through a
rectangular strip-like snag (Fig. 1(c)-ii), and last we make the
sheet bend diagonally through a diagonal strip-like snag (Fig. 1(c)-
iii). Further, by combining the three types of fundamental snags
in Fig. 1(c), we create more complex snag patterns which result in
a skate fish-like shape (Fig. 1(d)-i), an oblique cylindrical shape
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(Fig. 1(d)-ii), and a random complex shape (Fig. 1(d)-ii). In all
binary snag patterns in Fig. 1(c) and (d), we merge any snag units
that share sides (excluding the diagonal units that only share
vertices) into a snag block, and we weave the circumferential
ribbon of each snag block as a whole. An excellent match is
observed between the scanned geometry of the physical proto-
types and our mechanics simulation (which is detailed later in
Section 3), as shown in the colormaps in Fig. 1(c) and (d).

2.2 Generalizing the snagging strategy to complex 3D surfaces

We use snags to tune the shapes of 2D woven sheets in Fig. 1, but we
can also generalize this snagging strategy to 3D plain-woven surfaces
that have a spatial geometry. While using snags on a 2D surface can
fine tune the overall curvature of the system, it is not possible to
change the global surface geometry to become a surface with non-
zero Gaussian curvature such as a dome or saddle shape. Instead, in
Fig. 2, we show that we can adapt the same principles to more
complex woven surfaces and fine tune their local curvatures appro-
priately. Fig. 2(a)-i shows a 3D conical surface made by interweaving
twenty-one identical Mylar polyester ribbons.** We then introduce
three sparsely distributed snags to this 3D surface to distort the
conical shape and break its symmetry (see Fig. 2(a)-ii). This phe-
nomenon of local snags breaking a global symmetry also occurs for
a 3D saddle surface made by interweaving forty-two identical Mylar
polyester ribbons (Fig. 2(b)) and a 3D column-like structure with a
closed surface composed of a square plain-woven basket and a
square cover (Fig. 2(c)).** The scanned geometry of the physical
prototypes match well with our mechanics simulation (which is
detailed later in Section 3), as shown in the colormaps in Fig. 2.

3 Numerical modeling

We use a bar & hinge model to simulate the geometry
of snagged woven surfaces. The bar & hinge model is a
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reduced-order finite element method where we use bar ele-
ments to characterize stretching and shearing and we use
torsional spring (hinge) elements to characterize bending and
twisting of a structural system.*>*® This morphing process can
also be achieved using other similar simulation algorithms
such as discrete differential geometry.*” For snagged plain-
woven surfaces such as the woven sheet in Fig. 3(a), the small
squares formed by the intersection of woven ribbons become
the basic units in the bar & hinge mesh. The four sides along
the outer edge of each square are associated with bending
hinges of type I, which characterize out-of-plane ribbon bend-
ing along the ribbon; while the four half-diagonals inside each
square are associated with bending hinges of type II, which
characterize out-of-plane ribbon twisting. All locations of bend-
ing hinges also include bar elements which characterize in-
plane ribbon stretching and shearing.

We determine the values of the bar & hinge parameters,
including the bending stiffness Ky and stretching stiffness K,
using the material properties of the ribbons and the geometry
of the triangular panels in the mesh. The bending stiffness Kp is
given by

Ly \'? Elefrpend’ < Ly )1/3
Kp = CyDepr [ —2—) = Cp—ret .
? B (leff,bend> P12(1 = 02) \fefr pend )

where Cy is a dimensionless constant for bending stiffness
calibration,*® Deg = Etest pena /[12(1 — 17)] is the effective bend-
ing modulus, E is the Young’s modulus, v is the Poisson’s ratio,
teff,bend 1S the effective thickness of ribbons in bending, and Ly
is the length of each bending hinge. In our simulation, we use
Cg = 10 which is chosen such that our system matches the
experimental rest shapes, and we use E = 3.1 GPa and v = 0.38
obtained through a tensile test of the Mylar sheets. For bending
hinges of type I, the effective thickness is tef pena, = t (Where ¢ =
0.1905 mm is the thickness of individual ribbons) because only

Bar length L,

Hinge length L

Rest shape

Rendered rest shape

Fig. 3 Bar & hinge simulation of woven surfaces. (a) Physical prototype and the corresponding bar & hinge mesh of a plain-woven sheet with snags. A
zoomed in schematic of the different bar and hinge element types is shown on the right. (b) The iterative deformation of the surface in (a) from its trivial
shape to its rest shape obtained by using the ‘self-morphing’ solver, an incremental Newton—Raphson solver based on the bar & hinge model. The green
arrows in the trivial shape represent the boundary conditions that eliminate the six rigid body modes of the system during the self-morphing process.
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one ribbon is bent in the longitudinal direction where ortho-
gonal ribbons meet; while for bending hinges of type II, the
effective thickness is fefrpendasr = V2¢ because the effective
bending modulus is a linear superposition of the individual
moduli of the non-rigidly bonded woven ribbons.*®*° The
stretching stiffness K, is given by

) - ©

where C, is a dimensionless constant for stretching stiffness
calibration,’® Yeg = Eter axial is the effective stretching modulus,
teffaxial 1S the effective thickness of ribbons in axial stretching,
L, is the length of each bar, S and C are the area and perimeter,
respectively, of the triangular panel associated with the current
bar of interest, and % is the height of the triangular panel. If a
bar is shared by more than one triangle, its stretching stiffness
is calculated by summing the stiffness contributed by each
adjacent panel. In our simulation, we use C, = 0.36 which is
chosen such that our system matches the experimental linear
stiffnesses.’® For bars in stretching, the effective thickness
Teffaxial = 2t because without buckling or out-of-plane deforma-
tion, the woven ribbons and their continuous shell counterpart
are assumed to exhibit the same axial behavior.** The Cgy and
C, are experimentally calibrated based on a fundamental woven
unit, and these parameters have been proven to be robust
across different materials, weave densities, and boundary
conditions.**™*® In this work, the ribbons are made of Mylar
(which is a polymer material with a low coefficient of friction)
and they are tightly and densely woven, so we assume that the
woven sheets act as quasi-continuous shells with negligible
friction and shearing between the ribbons. We use a homo-
genization to model the global behavior and neglect the
detailed local behavior between the woven ribbons, so that
the model is both reasonably accurate and computationally
efficient.

Using the bar & hinge mesh, we obtain the rest shapes of
woven surfaces using a self-morphing technique.** We first
model the initial geometry of a woven surface using its trivial
shape with the same topology. For example, we model the
initial geometry of the snagged woven surface in Fig. 3(a) using
a trivial non-smooth surface that consists of a rectangular
substrate and two strip-like snags (Fig. 3(b)). We then set the
stress-free angles of all bending hinges 03" to be all © (180°),
which is a flat rest state in contrast to the initial trivial shape
where some ribbons are bent to n/2 (90°). By changing the rest
angles, we let the system address its own imbalance and
eventually find the actual smooth rest shape that makes the
resultant internal force zero. We use the incremental Newton-
Raphson iterations to track the nonlinear equilibrium path of
the system where we incrementally increase the stress-free
angles from their initial values to n, and the woven surface
gradually morphs from the trivial shape to its rest shape
(Fig. 3(c)). The total potential energy IT of a bar & hinge system

Ka = CaYerr

= CaElefr axial

This journal is © The Royal Society of Chemistry 2025
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that includes M hinges and N bars can be computed as:

M
1 SF O\ 2
F
II = Ubending + Ustretching + Vexternal = E EKBM <9B,m - 0]3‘,,1>
m=1

N
1 2
n ZIEKA’” (LA.H - Liﬁ) +fTu
(3)

where Upending and Ustretching T€present the internal bending
energy and stretching energy computed based on the rotation
of the bending hinges and deformation of the bars; while
Vexternal T€presents the potential of the external load. The two
quantities 0y, and L, , represent the current hinge angles and
bar lengths, while 03 and Ly’ represent the stress-free states of
the same elements. In the incremental Newton-Raphson solver
for self-morphing, we incrementally increase 03, and we set
LSF to the initially calculated bar lengths based on the trivial
shape. The two vectors f and u are the nodal load and nodal
displacement vectors. In the self-morphing process, there is no
external load so the Veyernar in eqn (3) is zero. Before we run the
self-morphing solver, we set up boundary conditions which
eliminate the six rigid body motions of the surface but do not
impede any elastic deformations. Fig. 3(b) shows the self-
morphing process from the trivial to rest shape of the snagged
woven sheet in Fig. 3(a). For simulations in Fig. 1, we compare
the average stretching versus bending strains (Fig. S4, SI). The
stretching strain is consistently small, which means the curva-
ture is mainly caused by bending of the ribbons.

4 Scaling relationships

Using the bar & hinge model introduced in Section 3 and
surface scanning, we numerically and experimentally study
the scaling relationships between the geometry of snagged
woven surfaces and essential design parameters. Our study is
based on the two most typical snagged woven surfaces—one
has a square substrate with a square snag at its center, which
causes the sheet to bend symmetrically about both axes of
symmetry (Fig. 4, left upper panel); while the other has a square
substrate of the same dimensions but with a rectangular strip-
like snag at the center, which causes the sheet to bend more
about the y axis (Fig. 4, right upper panel). We denote the
design parameters including the surface dimension as M, snag
dimension as N, ribbon thickness as ¢, material modulus as E;
and we denote the geometric parameters including the max-
imum absolute curvature value of the substrate bending about
the y axis as x, and about the x axis as «,. The two curvatures k,
and «, are calculated based on the coordinates of the sampled
nodes on the sheet substrates and not on the snags, which are
indicated by the blue circles shown on the top of Fig. 4. When
we study the scaling relationship regarding a certain design
parameter, all other design parameters remain constants
unless stated otherwise.

We first vary the surface dimension M while keeping the
snag dimension N constant to reveal how the snag distributes
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Fig. 4 Scaling relationships between the snag-enabled curvature and essential physical quantities of a woven system. (a), (b) shows the relationship
between the surface curvature k,, k, and the normalized surface dimension M/N; (c), (d) shows the relationship between the surface curvature x,, x, and
the thickness of the ribbons t; (e), (f) shows the relationship between the surface curvature «,, k, and the normalized Young's modulus of the material £/Eq
where Eq represents the Young's modulus of Mylar. The left column (a), (c), () shows the cases where the snag is rotationally symmetric (a square on the
center), while the right column (b), (d), (f) shows the cases where the snag is rotationally non-symmetric (a rectangular strip on the center aligned with the
y axis where the width of the strip is always 1 unit and the length is N units (N = 3, 5, 7,...)).

the geometric frustration across surfaces of different length
scales. For the symmetrically snagged surface (Fig. 4(a)), when
the normalized surface dimension M/N approaches infinity, the
surface curvature approaches zero at a rate of (M/N)™*. This
slow decay suggests that the local influence of the snag persists
even in larger sheets. For the non-symmetrically snagged sur-
face (Fig. 4(b)), the bending curvature about the flexible axis x,
is always larger than the bending curvature about the stiff axis
Ky A slight increase in the curvature x, occurs at first because
when the normalized surface dimension M/N is small, the snag
almost expands over the entire width along the y axis, and in
this case a larger surface relaxes the strong constraint imposed
by the rectangular snag which leads to an increase in k.
However, eventually both x, and x, reduce with (M/N) "7,
and similar to the case of the symmetrically snagged surface
the curvature persists for large sheets.

Next, we vary the ribbon thickness ¢ to reveal how thicker or
thinner material affects the shapes of snagged woven surfaces.

Soft Matter

For the symmetrically snagged surface, both curvatures x, and
Ky increase with the ribbon thickness ¢ (Fig. 4(c)) because the
self-restoring force (a bending dominated behavior) of the
woven surface increases as we use thicker material. However,
for the non-symmetrically snagged surface, the bending curva-
ture about the stiff axis «, increases with the ribbon thickness ¢
while the bending curvature about the flexible axis x, decreases
(Fig. 4(d)). The opposite trends of x, and x, occur as the
thickness ¢ approaches zero—in this case the self-restoring
force approaches zero, and thus the woven surface conforms
to the snag and forms a kink where x, approaches infinity and
Ky approaches zero. Despite the difference caused by the
symmetry of the snag, the surface curvatures of both surfaces
change at a rate of ¢'* or ¢t /3.

Finally, we vary the Young’s modulus of the material E to
study how the shapes of snagged woven surfaces change when
we use different types of materials. As Fig. 4(e) and (f) show, the
surface curvature does not change with the Young’s modulus E.

This journal is © The Royal Society of Chemistry 2025
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For a structural system with a linear elastic material, the
Young’s modulus E factors out of the energy functional as a
simple multiplicative constant (see eqn (1)—(3)). Therefore, the
Young’s modulus E affects the internal energy of the system but
not the rest shape.

From the curve sets in Fig. 4(c) and (e), we also observe that a
larger snag (a smaller M/N) leads to a larger curvature for the
symmetrically snagged surface. For the non-symmetrically
snagged surface (Fig. 4(d) and (f)), a larger snag makes the
bending curvature about the flexible axis x, larger while about
the stiff axis k, smaller. Future work can further explore the
scaling laws and underlying theoretical principles behind geo-
metric frustration from snags.

5 Inverse design and applications

We can make the snag patterns in Fig. 1 and 2 binary where we
assign ‘0’ to the substrate units and ‘1’ to the snag units (Fig. 5,
left panel). In this way, a snag pattern can be represented by a
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binary design vector 0 = (04,0,,. . .,0p)" where each element is 0 or
1 and the length P is the total number of all square units in the
original plain weave. A similar binary design for surface morph-
ing is also used in other non-woven systems.’’ Once a design
vector is specified, we can obtain the geometry of the corres-
ponding snagged woven surface based on our bar & hinge
model. This strategy also works the other way—we can inversely
find an optimal design vector once a target surface is given. We
limit the units to only ‘0’ and ‘1’ so that the design space will not
be too large and the fabrication will not be too difficult. We can
also have ‘-1’ units where we introduce snags to the back side of
the weaves to create more complex curvatures (Fig. S5, SI).
Here, we use the genetic algorithm®® to search the optimal
design vector and thus to determine the optimal snag pattern.
In this work, the size of the population in the genetic evolution
is set to 200 and the maximum number of generations is set to
100; the initial population is constructed by an all-zero design
vector and its 99 variants where in each variant a random
number of elements are set to one; the number of elite
individuals in each generation is set to 10 which is 5% of the

Target rest shapes
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Inverse design of snagged woven surfaces. (a) Schematic of the two-way process between the forward simulation of binary snag patterns and

inverse design of target rest shapes; (b) two examples of inverse design including (i) an initially square sheet that deforms to fit a leg and (ii) an initially
conical surface that deforms to fit an elbow. The left of (b) shows the target surfaces including the photographs of fitted surfaces and the scanned
surfaces, the right of (b) shows the optimal designs including the binary snag patterns, simulated rest shapes, photographs of physical prototypes, and
error mappings (where the colormap represents the normalized deviation between the simulated rest shapes and scanned surfaces of the physical
prototypes §/L where § is the deviation) (Hausdorff distances at each node) and L is the average length of all ribbons used; the simulated rest shapes are
smoothed with snags removed from the mesh (see Fig. S1, S| for details).
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population size; the percentage of the population that under-
goes crossover in each generation is set to 80%; the probability
of mutation is set to 0.3; the tolerance of the relative error for
convergence is set to 10~ °. The fitness function .# is given as

2(6;8) = éi a,(S)[ 230,
- t—

Deviation

with S = (x,y,z) = F(q).

Sparsity

Our fitness function ¥ (eqn (4)) has two terms. The first
term ‘Deviation’ represents how much the design surface
deviates from the target surface. The 0 is the binary design
vector with 0, being the p-th element, S is the smoothed
simulated snagged surface which is represented by a Q x 3
nodal coordinate matrix (x,y,z) and also a function of the design
vector F(0); the Q is the number of nodes compared on the
simulated surface S. The § is the target surface, dq(ﬁ) is the
Hausdorff distance®® from the g-th node in the simulated
surface S to the target surface S. During each fitness evaluation,
after we obtain a simulated snagged surface using our bar &
hinge model, we smooth the surface by removing the snag
features from the surface mesh so that the deviation caused by
snags will not affect the optimization (see Fig. S1, SI for details).
The second term of the fitness function ‘Sparsity’ represents
how sparsely the snags are distributed over the woven surface.
We combine the ‘Deviation’ and ‘Sparsity’ terms using the
weight factor /1 in eqn (4). A large A (1 or larger) leads to a
surface with very few snags but the surface will not match the
target very well. In this work, we set 4 to 0.3 to achieve an
optimal inverse design using minimal snags so that we simplify
our fabrication without sacrificing the accuracy. A sensitivity
analysis of 4 and the results based on other values of 1 are
shown in Fig. S3, SI. In this work, we use genetic algorithms
that are well suited for discrete optimization problems. For
future large-scale applications, in order to use gradient-based
optimization algorithms, we can use —1 (substrate)/1 (snag)
instead of 0 (substrate)/1 (snag) as the discrete design variables,
and then we can design a penalty function to limit the unit
value to [—1, 1] and penalize any intermediate values.’* Further-
more, if we make the width of the black ribbons a continuous
variable, then the unit value will be a continuous variable
within [0, H] where ‘0’ means that there is no snag for the
current unit and ‘A’ is the maximum width of the black ribbon
(which is also the maximum height of the snag) for the current
unit. In this case, we can also use gradient-based optimization
algorithms.

Next, we give two real-life examples for the inverse design of
woven exoskeleton surfaces (Fig. 5(b)). We use two flexible
sticky paper sheets that initially have a 2D square shape and
a 3D conical shape to fit onto the lower part of a human leg
(Fig. 5(b)-i, left panels) and a human elbow (Fig. 5(b)-ii, left
panels). Then, we scan these two surfaces and use the scans as
target surfaces (which is $ in eqn (4)). The evolutionary search
based on the genetic algorithm converges (see Fig. S2, SIfor
convergence plots). We run the genetic algorithm on an Intel

Soft Matter
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Core i9 14th Gen 14900K CPU, and we run parallel computation
on 4 CPU cores. The time consumed for the two cases in
Fig. 5(b) are 4.8 h and 5.6 h. Our final optimal designs have
an excellent match with the two target surfaces numerically and
experimentally (Fig. 5(b), right panels).

These inversely designed woven surfaces provide an excel-
lent axial support stiffness and efficiently absorb energy under
impact through the protruding snags.**>> The woven nature of
these snagged surfaces makes it easy to combine them with soft
knitted fabrics. Therefore, our strategy for inverse design of
snagged plain-woven surfaces can be easily applied to make
customized human exoskeleton suits.*"*® Future work could
further make these exoskeleton surfaces ‘smart’ and responsive
to external environment by integrating active material in weav-
ing. Besides the centimeter-scale applications shown here, our
inverse design framework and the concepts of snags could be
used for meter-scale structures in architectural systems®” or
micro-scale micro-electromechanical systems."®>®

6 Conclusions

When snags in plain weaves are not accidental but designed on
purpose, they have the potential to engineer the mechanical
and geometric properties of the entire structure. In this work,
we intentionally pull ribbons/fibers out of the plane and use
circumferential weaves to incorporate snags into plain weaves
based on pre-designed snag patterns where the sizes, shapes,
and positions of each snag are dictated. Snags break the local
in-plane surface of the weave and allow the fabric to deform out
of the plane—these local geometric incompatibilities propagate
through the entire weave and create a global 3D geometry from
an initially 2D flat structure. For initially 3D curved plain
weaves, snags can still be integrated to distort and tune the
shapes of 3D spatial structures. We can simulate the geometry
of snagged plain-woven surfaces using a mechanics-based
reduced-order bar & hinge model.

When we vary the size of a snagged woven surface M while
maintaining the size of the snag, we have x oc M~ " suggesting
that the local snag’s influence persists significantly even in
larger surfaces. When we vary the thickness of the woven
ribbons ¢, we have « oc t** for symmetrically snagged woven
surfaces; while for non-symmetrically snagged woven surfaces,
we have « oc t'? for the stiffer axis of bending and « oc t~* for
the more flexible axis of bending. When we explore materials
with different Young’s moduli E, the geometry of a snagged
woven surface does not change.

Finally, we use our mechanics model and an evolutionary
algorithm to create an inverse design framework where we
obtain optimal snag patterns which deform the surface to
match with a given target shape. We give examples where
snagged plain-woven surfaces are used to approximate the
shapes of a human leg and elbow. Combined with active and
electronic materials, our strategy of engineering snags into
plain weaves has the potential to enable the next-generation
fabrication of wearable conformal sensors, morphable
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lightweight composites, soft robotic skins, and more. For
example, using snagged woven surfaces, we can inversely
design a skin that would fit onto the shape of a specific robotic
system to provide a reasonably high stiffness along with other
multiphysical functions. When active materials such as shape
memory alloy wires are incorporated into 3D snagged woven
surfaces, compliant designs would allow for actuated robots
that have customizable geometries and motion patterns for
various scenarios.
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